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Tpﬂe 8.7 Set of Command Functions for Device Management

Commands o Action(s)

creat¢ and open create is for creating and open is for creating (if not created earlier) and
configuring and initializing the device.!

write Write into the device buffer or send output from the device and advance the
pointer (cursor).

read Read from the device buffer or read input from the device and advance the
pointer (cursor).

ioc:‘tl2 Specified device configured for specific functions and given specific
parameters. '

closejand delete close is for de-registering the device from the system and delete is for close

(if not closed earlier) and detaching the device.

!'Thefe are two types of devices: char devices and block devices. (Refer to Table 4.2 for definitions.)
Tn 4 system the ioctl ( ) is used for the following: (i) accessing specific partition information; (ii) defining commands and
cbnjrol functions of device registers; (iii) IO channel control.
The ioctl () has three arguments for the device-specific parameters.
1.} First argument: Defines the chosen device and its functions by passing as argument, the device-
* | descriptor (a number), for example, fd or sfd in Sections 7.14 and 7.15 for a device control. Example
is fd = 1 for read device, fd = 2 for write device.
2.| Second argument: Defines the control option or use option for the IO device. Network devices control
by defining baud rate or other parameters. Its use is as per function defined, as a second argument.
Controlled device will be according to the first argument.
.| Third argument: Values needed by the defined function are at the third argument.

ey
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pt vector address for a device ISR points to a specific C function). Function intContext () finds whether
pt is called when an ISR was in execution.

read and write. The following are the in-kernel commands: (i) select, which is to first check whether a
write will succeed. (ii) ioct! to transfer driver-specific information to the device driver. [For example,
ate in Example 8.7.] (iii) stop to cancel the output activity from the device. (iv) strategy to permit a
block lread or write or character read or write.



n classes of devices are’ char devices and block devices. Device driver functions may be sxnular;\'
fumuons, open, read, iseek, wme and ciosc :

8.6.2 File System Organization and Implementation

A file is a named entity on a magnetic disk, optical disk or system memory. A file contains the data, chagacters
and texts. It may also have a mix of these. Each OS may have differing abstractions of a file. (i) A file may be

a named entity that is a structured record as on a disk having random access in the system. (ii) A file

ay be

a structured record on a RAM analogous to a disk and may also be either separately called RAM isk or
simply, a ‘file’ (virtual device). (iii) A file may be an unstructured record of bits or bytes. (iv) A file flevice

may be a pipe-like device.

It is necessary to organize the files in a systematic way and to have a set of command functions. Table 8.8
gives these functions for POSIX file system. :
Table 8.8 Set of Command Functions in the Portable Operating System Interface (PDSIX)
File System '
N - T
Command in POSIX Action(s)
open Function for creating the file E
write Wiriting the file . g
read Reading the file
Iseek (List seek) or set the file pointer Setting the pomter for the appropnate place in the file for the nem ri:ad
or write ol
close Closing the file é* ]
Notes: 1. File devices are block devices in Unix. Linux permits the use of a block device as a char device also. This is be¢ause
between block device and char device, Linux has an additional interface. In other words, the kernel mtarfice is
identical for the char and block devices in Linux but not in Unix. |
2. The file on the RAM that is hierarchically organized is known as RAM disk. RAM memory storage is analdgaus to
that on the disk and accessing is also analogous to a disk. For example, path for accessing a file is directofy, then
subdirectory, then folder and then subfolder. There is hierarchical tree like the filing organization. |
3. Unix has a structured file system with an unstructured hardware interface. Linux supports different standard file

systems for the system.

having characters? Due to the differing approaches to device and file management interfaces, the devel
of a set of standard interfaces becomes must. Only then can systems be portable. A standard set of inte

Should a file having integers differ from a file having bytes? Should a file having bytes differ fro:i)d file

!
i

ment
des is

called POSIX, from IEEE. POSIX stands for portable operating system interface standard for coding prggtams
when using the multiple threads. The X after I is because of the interfaces being similar to the ones in Unik.!Itis

according to the definitions at the AT & T UNIX System V Interface. POSIX defines the functions: open

close,

read, write, Iseek and fcntl. Function Iseek is to move the pointer position in the byte stream. Function fcntl is for

file control. The POSIX standard for file operations are as the operations on a linear sequence of bytes.
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commy functions, createFile, ReadFile, WriteFile and SetFilePointer, and CloseHandle for creating a file,
reading 4 file, writing a file and setting the file pointer from the present to a new location.

1. Block file system. Its application generates records to be saved into the memory. These are first structured
i ipto a suitable format and then translated into block streams. A file pointer (record) points to a block
m the start to the end of the file.
2. Byte stream file system. Its application generates record streams. These streams are to be saved into
’ memory. These are first structured into a suitable format and then translated into byte streams. A
' fille pointer (byte index) points to a byte from the start index = 0 to N-1 in a file of N bytes.
Just 3s each process has a processor descriptor (PCB); a file system has a data structure, called file descriptor

Meaning(s)
Identit Name by which a file is identified in the application
Creatod or owner Process or program by which it was created
State! A state can be ‘closed’, ‘archived’ (saved), ‘open executing file’ or ‘open file for additions’

Locks 4nd protection fields ~ O_RDWR file opens with read and write permissions, O_RDONLY file opens with
‘ read only permissions, O_WRONLY file opens with write only permissions

File #n Current length, when created, when last modified, when last accessed
Sharing permission Can be shared for execution, reading or writing '

Count Number of directories referring to it’

Storing media details Blocks transferable per access

A ﬁ?e @anager creates, opens, reads, seeks a record, writes and closes a file. A file has a file descriptor.

8.6.§ 1/0 Subsystems

are the subsystems of OS device management systems. Drivers communicate with the many devices
them. VO instructions depend on the hardware platform. I/O systems differ in different OSes.
s of a typical 10 system are as given in Table 8.10.

are two types of 10 operations-synchronous and asynchronous. There may be separate functions for
ous and asynchronous operations in an RTOS. In case of traditional OS, only synchronous I0s may
rted.

ronous 10 operations are at certain fixed data transfer rates. Therefore, a task (process) blocks tills
letion of the IO. For example, a write function, write () for 1 kB data transfer to a buffer. Synchronous
ion means once synchronous IO initiates, the data transfer will block the task till 1 kB data gets
transferyed to the buffer. Similarly, read () once initiated blocks the task till 1 kB is read.
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Table 8.10 Input/Output (I/O) Subsystem in a Typical I/O System in an Operating
System (OS) ;

Subsystems Hierarchy ' Action(s) and Layers between the Subsystems

Application An application having an I/O system. There may also be a sublayer be Wk ga the
application and I/O basic functions &

IO basic functions . These are device-independent OS functions, for example, file system gtions
for read and write, buffered 10 or file (block) read and write functio ere
may also be a sublayer between the basic 1/O functions and I/O devi iver
functions &

10 device driver functions These are device-dependent OS functions. A driver may interface w1t§!; get of

.. library functions, for example, for serial communication i

Device hardware or port or Serial device or network 4

IO interface card . g

Asynchronous 10 operations are at the variable data transfer rates. It provisions for a process|of high
priority not blocked during the 10s.

Example 8.8 }
POSIX has the following asynchronous functions: aio_read () and aio_write for the asynchronays |
3

- and write in an I/O system. Therefore, an aio_read () and aio_ wntc()donotblock the task till comp
of the IO. aio_list () isto initiate a list of certain maximum asynchronous I/O port requests. aio_e
(), aio_cancel, aio_suspend are functions for asynchronous IO error status retrieval and for
cancelling and.suspending I/O operations, respectively. Suspension is till the next port device |,

~ interruption or till a timed out aio_return returns the status of completed operations. F

I/0 subsystems are an important part of OS services. Examples are the UART access and the p
access. There are synchronous and asynchronous IOs. A task gets blocked during the synchronous I
example, fread ( ) or write ( ) (Section 7.14). RTOSes support asynchronous IOs, for example, g
() and aio_write also in order to not to block a task during the 10s.

, for

B 8.7 INTERRUPT ROUTINES IN RTOS ENVIRONMENT AND HANDLING
OF INTERRUPT SOURCE CALLS

In a system, the ISRs should function as following.
1. ISRs have higher priorities over the OS functions and the application tasks. An ISR does not jwait for

a seraphore, majlbox message or queue message (Sections 7.11 to 7.13). f

2. An ISR does not also wait for mutex (Sections 7.7.3 and 7.8.3) else it has to wait for otheq critical
section code to finish before the critical codes in the ISR can run. Only the accept function ﬂ these

events can be used (row 7 Table 7.1 and Section 7.11).

There are three alternative systems for the OSes to respond to the hardware source calls from the mtetrupts
Figure 8.1(a—) show the three systems. The following sections explain the three alternative systems|in three
OSes for responding to a hardware source call on interrupts. |

i
!
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8.7.1| Direct Call to an ISR by an Interrupting Source and ISR Sending an ISR
Enter Message

Figure B.1(a) shows the steps. On an interrupt, the process running at the CPU is interrupted and the ISR
corre$pbnding to that source starts executing (step 1). A hardware source calls an ISR directly. The ISR just
ISR enter message to the OS (step 2).

& simply sent an ISR enter message (ISM) from the ISR in step 2. Later the ISR code can send into a

the re from the ISR (step 4). The ISR enter message in step 2 is to inform the OS that an ISR has taken
ontro} ¢f the CPU. The ISR continues execution of the codes needed for the interrupt service till the ISR exit
mess4 is sent just before the return (step 4) .
' Interrupt sources i
1 —
Codes for ISR; ™12 Codes for ISR; | ' >
: > 4
3
Return - Retumn .. —5 Interrupt
4 ] source i
0S; 0s; : D __ Save
|s;-'< art ) 2 > context k
gtartmessage -~{ - T*— |  igsk k- >
e task k ~— 3 | calllsR;
Eyenti message - .
Event j - -
( a) message (b)
Codes for ISR; rSg Calll SR';
Return .. 5 1
0S; - Interrupt source i
> » Save context k 5
I 4 3 L
Event i message -~ 6 )
- Retrieve
i > context k
<Y callIsT; 8 and run
" IST for j - 6 Retumn task k
7 to0S again
(©
Fig. 8.1 (a)—(c) Three alternative systems in three real-time operating systems for responding to a
hardware source call on interrupts
Thefe are two functions, ISR and OS functions, in two memory blocks. An i-th interrupt source causes i-
th IS}( ISR _i. to execute. The routine sends an ISR enter message to the OS. The message is stored at the

memoty allotted for OS messages. When the ISR finishes, it sends ISR exit to the OS and there is return and
either there is the execution of interrupted process (task) or rescheduling of the processes (tasks). OS action
depends on the event messages, whether the task waiting for the event is a task of higher priority than the
interrupted task at the interrupt.

On fertain OS, there may be a function OSISRSemPost ( ). The ISR semaphore is a special semaphore,
which DSISRSemPost () posts and on return from the OS to be taken by the calling ISR itself. OS ensures
that O$ISRSemPost executing ISR is returned after any system call from the ISR.
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Example 8.9
Consider the RTOS pCOS-II. Assume that a microcontroller has a hardware timer, which is prongn

d to
interrupt every 10 ms. The microcontroller on timer interrupt calls and PC changes to an ISR vector iess,
ISR_Timer_Addr. At ISR_Timer_Addr, there is a routine ISR_Timer for servicing the timer i tj’upt.
ISR_Timer first executes OSIntEnter () just after the start of ISR_Timer is called. o
ISR _Timer then executes OSIntExit ( ) before the return code. 41
The OSIntEnter ( ) sends the message to the RTOS that there should be context-switch and return { 4\
the ISR only after any system call is made by the ISR or until the OSIntExit ( ) executes.in the I8!
code. Any task waiting for the post of semaphore or mailbox message or queue message should notsj |
start on execution of the post function within the ISR or in any other task or ISR. RTOS schedules
that later on return from ISR.

The multiple ISRs may be nested and each ISR of low priority sends high priority ISR interrupt essage
(ISM) to the OS to facilitate return to it on the completion and return from the higher priority i
Nesting means when an interrupt source call of higher priority, for example, system real-time clock ifiterrupt
(SysCIkIntr) occurs, then the control is passed to higher priority SysClkIntr and on return from thj higher
priority the lower priority ISRs or tasks starts executing. The number of ISRs can be nested with eXecution
order in sequence to their priorities. Each ISR on letting a higher priority interrupt call sends the ISM (step 4)
to the RTOS.

There is common stack for the ISR nested calls, similar to the nested function calls (Table 7. 1).

8.7.2 RTOS First Interrupting on an Interrupt, then OS Calling the
Corresponding ISR

Figure 8.1(b) shows the steps. On interrupt of a task, say, k-th task, the OS first gets the hardware so

called ISR (step 3) during execution then can post one or more outputs (step 4) for the events and
into the mailboxes or queues.

saving the context (step 2) onto a stack. The preemption point is the last instruction of the critical p
presently running OS function, after which the ISR being of highest priority is called. The ISR in s

codes whenever it is scheduled (according to priorities). OS schedules only the tasks (processes) and swi
the contexts between the tasks only. ISR executes only during a temporary suspensmn of a task.

ISR calls from a priority ordered FIFO (Table 7.1).
The system priorities are ISRs and then tasks (or ISTs). IST is just a task initiated on signal or
from an ISR (for example, task j in above example).
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¢hidevice event has the codes for an ISR, which executes only on scheduling by the RTOS and provided
errupt is pending for its service. Consider mobile PDA device example (Section 1.10.6). The 5 steps-
¢ interrupt servicing by first interrupting the RTOS process are as follows:: - - =0 o
Ajsume that using RTOS, touch screen ISR, ISR_TouchScreen has been created using a function:
§R_Create (). The ISR can share the memory heap with other ISRs. A function, IntConnect connects
wach screen event with the event identifier in an interrupt handler, ISR_handler.
4 a touch screen event occur, which means the user of the mobile device taps the screen at a
tdiicon or menu (step 1). After saving context of current process (step 2) the OS sends the
# of the ISR_handler to the initiate ISR_TouchScreen (step 3). upt sel :
fid TouchScreen Input IST_TouchScreen waits using a function OS_eventPend ( ) for message (an
edt, such as semaphore, mailbox or queue message) (stpe 4) from the ISR TouchScreen. The IST
i s as per its priority Task or IST_TouchScreenPriority among the other pending ISTs or tasks
of¢ it starts executing. AR R e B o
Bifore return from the ISR_TouchScreen, it sends a message to the kemel using a OS_ISR_Exit() 4 A
§ Bufore the end of the codes in the ISR_TouchScreen (step 5). The ISR_TouchScreen canbe

4 fed on the next interrupt event and gets ready for the next hardware event of tap on the screefi.

RTOS First Interrupting on an Interrupt, then RTOS Initiating the ISR
~and then an ISR

OS can provide for two levels of ISRs, a fast-level ISR, FLISR and a slow-level ISR (SLISR). The
can also be called hardware interrupt ISR and the SLISR as software interrupt ISR. FLISR is called
e ISR in RTOS Windows CE. The SLISR is called interrupt service thread (IST) in Windows CE. The

best-case latencies difference) for an interrupt service.

An IST functions as a deferred procedure call (DPC) of the ISR. An i-th IST is a thread to service an i-th
ipt source call.

Figure 8.1(c) shows seven steps on the interrupt. On interrupt, the RTOS first gets the hardware source
call (§tep 1) and initiates the corresponding ISR after finishing the critical section and reaching the pre-
emptipn point and then saving the processor status (or context) (step 2). The ISR executes the device- and
-dependent code (step 3). The ISR at the start can mask (disable) further pre-emption from the same or
other hardware sources. The ISR during execution then can send one or more outputs for the events and messages
into the mailboxes or queues for the ISTs (step 4). The IST executes the device- and platform-independent code.
R just before the end, unmasks (enable) further pre-emption from the same or other hardware sources
),
ere are the ISRs and number of ISTs, RTOS and tasks in the memory blocks other than the interrupted
Any interrupt source causes the RTOS to get the notice of that, then completes the critical code till the
pre-emption point and calls the ISR. ISR executes after saving the context onto a stack. The ISR can post
mess3ge(s) into the FIFO for the IST(s) after recognizing the interrupt source and its priority. The ISTs in the

HO| that have received the messages from the ISR(s) executes (step 6) as per their priorities on return
(step [S) from the ISR. The ISR has the highest priority and pre-empts all pending ISTs and tasks.
en no ISR or IST is pending execution in the FIFO, the interrupted task runs on return (step 7).
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schedule. The system priorities are in order of ISRs, ISTs and tasks. The ISTs are SLISRs running device-
independent codes as per the device priorities on signals (SWls) from the ISRs.

The ISTs run in the kernel space. The ISTs do not lead to priority inversion and have the priority inhe
mechanism.

Example 8.11

Consider Mac OS X. The Mac OS X is RTOS for the mobile device, for example, iPod. An infg
handler first receives the primary interrupt and then it generates a software interrupt known as a sec:
interrupt. The secondary software interrupt is sent to initiate an IST.
_ The OS does not receive the actual interrupt but the low level process intercepts the interrupt. It £hid
low-level (hardware level) ISR, LISR. It resets the pending interrupt bit in the device interrupt co 3
and calls a device-specific ISR, say, DISR;. The DISR,; posts a message to an IST; specific to the dévi
The message notifies to the IST; that an interrupt has occurred, and then the DISR, returns to LISR..LE
resets another pending interrupt bit in the device interrupt controller and calls the another device-spd
ISR, say, DISR;. 11 9

When no further interrupts are pending, the OS control returns to the currently executing threa d| |
‘which was interrupted and when the OS passed control to the LISR.

The IST; are scheduled by the OS, the IST,; finds that the SWT has occurred, it starts and run
the codes. ISTs run as if a thread is running.

An RTOS uses one of the three strategies on interrupt source calls: (i) an ISR servicing directly¥ak
merely informing the RTOS at the start of ISR; (ii) kernel intercepting the call and calling the correspdijd:
ISRs and tasks. RTOS kernel schedules only the tasks (processes) and ISR executes only during a te ';% 1
suspension of the task by the RTOS; (iii) kernel intercepting the call and calling the ISR, which i
and queues the ISR calls into a priority FIFO. The ISR signals the SWIs for the ISTs. The RTOS kbrhel
schedules the ISTs as priority queue and then tasks processes as per the priority queue. i T

~ 8.8 ~ REAL-TIME OPERATING SYSTEMS

An RTOS is multitasking OS for the applications needing meeting of time deadlines and functioning ip real-
time constraints. Real-time constraint means constraint on time interval between occurence of an eveht: and
system-expected response to the event.
RTOS-software has the OS services listed in Table 8.11. These enable design of software for q large
number of embedded systems. ;

An RTOS is an OS for response time-controlled and event-controlled processes. The processe?i : e
predictable latencies. An RTOS is an OS for the systems having the real timing constraints and
on the tasks, ISTs and ISRs.
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e 8.11 Real-Time Operating System (RTOS) Services

Function

Activities

Basic

Proce:

prioti

Proce

DS functions

priorities management:
allocation

mailagement:

preemption

Process priorities management:
priority inheritance

Process predictability

Merhory management: protection

Memagry management: MMU

Memgdry allocation

RTOS| scheduling and interrupt
latency control functions

Timer|functions and time

mara,

ement

Asynchronous IO functions

IPC synchronization functions

§

Spin lpcks

Time
Hard

plicing
and soft real-time operability

Process management, resources maﬁagement, device management, /O
devices subsystems and network devices and subsystems management.
User-level priorities allocation, called static priority allocation or real-
time priority allocation is permltted. The real-time priorities are higher
than the dynamically allocated priorities to the OS functions and the idle

“priority allotted to low priority threads. The idle priority thread or task is

one which runs when no other high priority ones are running.

The RTOS kerniel preempts a lower priority process when a message or
event for which it is waiting to run a higher priority process takes place. The
RTOS kernel has the preemption points at the end of the critical code ana
therefore the RTOS can be preempted at those points by a real-time high
priority task. Only small sections in the RTOS functions are non-preemptive.
Priorities inheritance enables a shared resource in low. priority: task, for
example, LCD display, be used by high priority task first. An intermediate
priority task will not pre-empt the low priority task when it is locked to run
the critical shared resource or code for the high pnontytask(Secuon 7.8).
Priority sealing in place of priority mhemanoe option can also be used for
a specific system.

" A predictable timing behaviour of the system and a predictable task
synchronization with minimum jitter (difference between best-case and

worst-case latencies).
Inkl‘OSﬂxreadsofappﬁ&ﬁdnpmgfatncanmninkﬁmelspace.me
real-time performance becomes high. However, then a thread can access
the kemel codes, stack and data memory space, and this could lead to
unprotected kernel code.

Memory management is by elﬂxerdxsabhngmeuscofWUandvm\ml
memory or by using memory locks. Memory locking stops. the page

- swapping between the physical memory and disk when MMU is disabled.

This makes RTOS task latencies predictable and reduces jitter (time
between worst-case and best-case latencies for a task or thread).

In RTOS, the memory allocation is fast when there are fixed
length memory block allocations. First, speed of allocation is important
(Example 8,6).

Real-time task scheduling and interrupt latency control (Section 4.6) and
use of timers (Secuons 3.6, 3.7 and 3.8) and system clocks,

Provides for timer functions. There is time allocanon and dc-allocatlon
to atfain efficiency in given tnmng constramts

Permits asynchronous IOs, which means 10s without blockm,g a  task,
- Synchronization of tasks with IPCs. (semaphores, mailboxes, message

queues, pipes, sockets and RPCs).

- Spin locks for critical section lmndhng (Section 8.10. 4)

Time slicing of the execution of processes which have equal priomy
Hard real-time and soft real-time operations (Section 8.9.3)
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~ 8.9 BASIC DESIGN USING AN RTOS

An embedded system with a single CPU can run only one process at an instance. The process at any instance
may either be an ISR, kemel function or task (Sections 8.1.2 and 8.7). An RTOS use in embedded pystem
facilitates the following.
1. An RTOS provides running the user threads in kernel space so that they execute fast (Examplg 8.1).

2. An RTOS provides effective handling of the ISRs, device drivers, ISTs, tasks or threads (Sectipn 8.7)
and the disabling and enabling of interrupts in the user mode critical section codes. A critical ection

means a section of codes or a resource or codes that must run without blocking. One critical sifuation

is when there is a shared data or resource with the other routines or tasks. RTOS provides for effective
handling of such a situation. ,

3. AnRTOS provides memory allocation and de-allocation functions in fixed time and blocks of memory
(Example 8.6) and restricting the memory accesses only for the stack and other critical memory|blocks
(Section 8.5).

4. An RTOS provides for effectively scheduling and running and blocking of the tasks in cases ¢ many
tasks (Section 8.10). '

5. I/0 management with devices, files, mailboxes, pipes and sockets becomes simple using an RTOS.
(Sections 7.9 and 8.6) RTOS provides for the use of message queues and mailbox, pipes, sockets and

other IPC functions (Sections 7.9 to 7.15). RTOS provides for the use of semaphore(s) by tasks or for

the shared resources (critical sections) in a task or OS functions (Section 7.7.2).

6. Effective management of the multiple states of the CPU and internal and external physical or|virtual
devices. Assume that the following actions are concurrently needed in an application. (i) Physical glevices

timer, UART and keyboard have issued the interrupts and the service routines are to be executed. (i) A

file is taken as a virtual device. The file also must be opened with its pointer to its first record (iii) A
physical timer is to configure its control register. (iv) Another timer gets a count input from the |system

clock. (v) A virtual device, a file, gets the inputs for writing onto it. (vi) A timer states changes on timeout

and generates a need for its service. (vii) A file states changes on transfer of all needed records to t. (viii)

A timer executes a service routine on timeout. (ix) A file needs execution of a function, close( ). By
effectively using a common method to handle these needs, the RTOS solves all the problems.

Basic design principles in RTOS environment are as follows.

8.9.1 Principles

Following are the design principles when using an RTOS to design an embedded system.

Design with the ISRs and Tasks The embedded system hardware source call generates interrupts. On
interrupt, if the interrupt is not masked (disabled) the interrupt saves the current process (a task or
OS function) context on a stack and executes the ISR corresponding to tat interrpt. The handling of i tdrrupt

environment. Interrupts are masked by disable interrupt command and unmasked by enable inter 1pt co

The ISR can only post (send) the messages for the RTOS and parameters for the tasks. No ISR ins
should block any task. Therefore, the ISR should not use mutex locks and should not use OS pending
for the IPCs. Only an RTOS initiates the actions according to the ISR-posted signals, semaphores,
mailboxes and pipes (Section 7.9) and the RTOS control states of the tasks and interactions with the
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DS provides for nesting of ISRs. This means that a running ISR can be interrupted by a higher priority
pt and the higher priority ISK starts executing, blocking the running of low priority ISR. When the high
interrupt service completes and there is return to the low priority interrupt after retrieving the saved

should be optimally short and the detailed computations be given to an IST or task by posting the message or
eters for that. The frequent posting of the messages by the IPC functions from the ISRs should be avoided.
there are frequent interrupts from the same source, then the messages can be first put in the buffer on

énple 8.12

ider ACVM (Section 1.5.2). Consider the task, Task User Keypad Input (Example 7.3). When a user
s a key on the AVCM, it generates a hardware device interrupt. Assume that the pressed key is read
gking the ASCII code for the pressed key by the ISR_KeylnputDevice. One option is sending the
A%(Q 3 code as the queue message for Task User Keypad Input. Every time the key is pressed the
KeyInputDevice posts the ASCII code into the message queue. Task User Keypad Input is the task,
i¢h has to interpret the user key entries. When there is return from the ISR_KeyInputDevice the RTOS
dg the wait of the message into the queue and Task User Keypad Input gets the ASCII code. However, till
sufH time the user entry is complete, there is no further action and Task User Keypad Input again enters the
for taking the message from the queue.
econd option is that the ISR_KeyInputDevice sends the ASCII code into a key buffer, KBuffer. On each
efupt, this is done as long as the user key entry is for the enter key. On the enter key, the ISR_
mputDevice posts a semaphore, semKB to the Task User Keypad Input. The Task User Keypad
‘takes the semaphore and reads the KBuffer and takes appropriate action as per the user entries

n Each Task with an Infinite Loop from Start (Idle State) up to Finish (Last State) Each
hs a while loop which never terminates. A task waits for an IPC or signal to start. The task, which gets the
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Example 8.13 : ‘
Cons1der ACVM (Section 1.5. 2) Example 7.3 showed that ACVM (Sectlon 1. 10 2) system can be ditki

) GUI Task aad (vi) Communication task. Let us use the five semaphores which are posted fro '
task and taken up by another task. Five semaphores are semKB, SemRead, SemChoc
SemDisplayThanks and SemDisplayThanks. A code design is as follows.

[k skl ki ok ok sk deodokskopokook deok sk ok ok skt ok ok e ok skak ok ok sk ok sk skok sk skokok ok f

Task User Keypad Input {

 while (1) { /* Code for sending into key buffer ASCIT codes on each run of ISR_Key Input Device W
0OSSemPend (semKB); /* Example 8.12 showed use of SemKB */ 1
/* Code for action as per key entries*/

OSSemPost (SemRead) /* Post a semaphore to let the Task read amount start */ 4
} R 5A5 §
} : il
Task Read_Amount { i}
int cost; /* The cost of the chocolate selected by the user from user input key*/
while (1) { %
OSSemPend (SemRead); /* Wait for message from Task User Keypad Input */ :
/* Code for action as per reading the Coins, get the value of coins in variable amount */ %x '

¥

If (amount > = cost) OSSemPost (SemChocolate) /* Post a semaphore to let the Task Chocolate d
start if amount is equal or more than the cost*/ : H
OSSemPost (SemDisplayThanks) /* Post a semaphore to let the Task_Display show the message} Wi
for the mce chocolate*l 5

}
}
Task Chocolane Dehvery {

while (1) { : ‘ | B b
OSSemPend (SemChocolate), /* Wait for message from Task Read_Amount */ o
/* Code for action for chocolate delivery */ "

OSSemPost (SemDisplayCollect) /* Post a semaphore to let the Task_Display show
the message, Thanks you, Collect the nice chocolate, Visit Again. */

} ' ‘ e
} . :
Task Display { i

while (1) { . | | , ¥
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i ' Pend (SemDisplayThanks); /* Wait for message from Task Read_Amount */ ~_
Cdde for displaying the message, Thanks you, Collect the nice chocolate, Visit Again */
SeémPend (SemDisplayCollect); /* Wait for message from Task Read_Amount */

’ ‘3 for displaying the message, the message, Wait for the nice chocolate */

then llask_ Read_Amount starts. Then it posts semaphore ssmChocolate after the user inserts coins for the
apprépriate amount. The task design is such that each code is in the waiting loop and waits for the message
thrpugh the RTOS to start and run the task codes. ISR_KeyInputDevice initiates the chain of actions on the
AGCUM.

Aksume that the priority assigned to the tasks are in the following order: Task User Keypad Input, then
Ta.fk ead-Amount, then Chocolate delivery task then Display Task, then GUI_Task and then Communication
task. 57 each a semaphore is being posted from one task in higher priority and taken only by another
ask bf lower priority, we could have used the same semaphore, say, sem0 for semKB, B SemRead
and $emChocolate to synchronize the tasks. However, to encapsulate the semaphores between the

taskg ‘we use five semaphores, semKB, SemRead, SemChocolate and SemDisplayThanks.
wr

Fi%t he ISR _KeyInputDevice posts semKB, then Task User Keypad Input starts, which posts SemRead,

Design in the Form of Tasks for the Better and Predictable Response Time Control The
RTOS|provides the control over the response time of different tasks. The different tasks are assigned different
prioritjes and those tasks which system needs to execute with faster response are separated out. For example,
in a mobile phone device (Example 1.10.5) there is need for faster response to the phone call-receiving task
then the user key input. In digital camera (Example 1.10.4), the task for recording the image needs faster
resporjse than the task for downloading the image on a computer through USB port.

Design in the Form of Tasks for Modular Design System of multiple tasks makes the design
modular. The tasks provide modular design. For example, in a mobile phone device (Example 1.5.5) we
consider the user key input and display as separate tasks. When the display size changes and new display
hardwhre is introduced, only the codes for the display task and resource or data-sharing tasks and ISRs need
to be modified. When a new functionality is introduc~? in the system, the user key input task and new
functipnality-associated tasks need to be modified.

Design in the Form of Tasks for Data Encapsulation  System of multiple tasks encapsulates the
code gnd data of one task from the other. In Example 8.13, the cost is encapsulated in TaskRead_Amount
from dther tasks and the messages such as ‘Thank you, Collect the nice chocolate, Visit Again’ encapsulate in
the digplay task.

Design with Taking Care of the Time Spent in the System Calls The expected time in general
depenfls on the specific target processor of the embedded system and the memory access times. However, in
order fo provide the relative magnitude of the time taken for basic actions at a preemptive scheduler, a new
parameter is defined. It defines the time taken for an action by an RTOS scheduler in terms of an assumed scaling
parampter, S. S emphasizes the relative magnitudes of execution times for various actions in a typical RTOS.
Let time taken for the simplest instruction be t,;,. The minimum time is when the semaphores P and V are
assigned certain initial values, true or false. Let S be defined in units of T,. The T and t;, depend on a specific

|
|
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target processor of the embedded system and the memory access times. For example, a typical valu
processor, t_ .. is 0.6 ps and let T, = (4 ps + 0.6 ps). Let t,, .. = (tyn + S.T,). This equation defines S as the
over and above t.;, in units of a basic time unit, T,.

for a
time

If the same RTOS runs on a different processor, the S will therefore remain the same. S is taken as the

nearest positive integer for the relative magnitude of execution times for the scheduler actions.

1. S =1 will mean t,.. between 2.8 us and 5.2 us

2. S =2 will mean 7.4 us to 8.8 us

3. S=4 will mean 14.2 us to 18.0 us

4. S =5 will mean 20.6 ys + 3.0 ps

5. S =10 will mean 40.6 us + 6.0 us

6. S =15 will mean 60.6 ps + 8.0 ps

Table 8.12 gives a list of basic actions in a preemptive RTOS and execution time in terms of a sc

parameter S.

aling
|

Table 8.12 A List of Basic Actions in a Preemptive RTOS and Execution Time in Terms of

a Scaling Parameter S

B )

Action S Action S Action S Action S
Context Switch 2 Task suspend 1 Sem post/take 1 Message Q delete 10
Task initiate 12 Task resume 1 Take semaphore, 1 Q receive Message 2

mutex, counting available
semaphore when
sem available
Task create and 28  Task Lock when tnin  Semaphore, mutex, 6  Q receive Message 1
| activate no lock or Unlock counting semaphore not available
when lock exists create or delete
Task delete 10 Mem allocate 2 Release semaphore, 3 Message Q Send 5
mutex, counting task pending :
semaphore when
inQ :
Task switch flag = 1 Mem free 4  Mutex flush 1 Message Q send R
for running task not pending
Task create or 18  Network byte tnin Release semaphore, 1 Message Q Send 1
delete send mutex, counting queue full |
semaphore when no
task in Q
Semaphore flag 4  Message Q create 105
or counting
semaphore flush i
Abbreviations are as in brackets: Semaphore (Sem), Queue (Q) and Memory (Mem). ;
The RTOS create ( ) function to create a task takes longer CPU time than writing into a queue alfithen
reading from the queue, and using a semaphore takes the least. Therefore, a design should create all thy

at the beginning, even before the start of the tick of the system clock.

tasks
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As qpeue takes longer time than the semaphore, use semaphores if it suffices. For example, consider the
codes in[Example 8.13. OSSemPost (SemDisplayCollect) is used in place of the queue for posting the message
“Thank you. Collect the nice chocolate, Visit Again.” for the display task. Getting a semaphore takes the least
CPU tine.

As signals take the least time among the IPCs, use signals for the most urgent IPCs (e.g., error reporting by
throwing the exceptions).

Limit the Number of tasks and select the appropriate number of tasks to increase the
responise time to the tasks, better control over shared resource and reduced memory
requirement for stacks We limit the number the number of tasks appropriately. The tasks, which share
the datalwith number of tasks, can be designed as one single task. The examples of such tasks are: (i) display

task for the messages from a number of tasks, (ii) printer task for the messages from a number of tasks and (iii)
flash mémory writing task for writing into the flash memory by the number of tasks.

imple 8.14

figér a mobile phone device (Example 1.5.5). It needs to do the following tasks: display time and date
pér fhe message posted by the other task, display battery power as per the message posted by the other
task)d : fplay signal strength as per the message posted by the other task, display device profile (general or
t} as per the message posted by the user input task, display messages posted by the
dsk and display call status and display menus.

'dsign can be that which assume each display action as a separate thread. Another design can be
play task, which accepts messages from different tasks and displays. It will lead to creation of
' opfe task for display and one TCB and stack for the display task. A single task for display

ab better control of when, where and what to display.

is routing the packets of multiple clients.

deadlodk will then occur. An RTOS may not provide protection for these situations.
in RTOS provide an option to make a semaphore deletion safe.

e CPU Time for Internal Functions Often, the CPU may not be running any task. All tasks
may be jwaiting for preemption (for transition from ready place to running place). The CPU at that instant may
associate the RTOS for the following. Read the internal queue. Manage the memory. Search for a free block
of memory. Delete or dispatch a task. Perform the internal and IPC functions.




Design with Memory Allocation and De-Allocation by the Task If memory allocation|and de-
allocation are done by the task the number of RTOS functions is reduced (Example 8.6, Section 8.§ ). This
reduces interrupt latency periods as execution of these functions takes significant time by RTOS whénever
the RTOS pre-empts a task. ‘

Further, if fixed sized memory blocks are allocated, then the predictability of time taken in memory allocation
is there.

Design with Taking Care of the Shared Resource or Data among the Tasks The ISR coding
should be like a reentrant function or should take care of problems from the shared resources or data such as
buffer or global variables (Section 7.8). Disabling of running of other tasks for a longer period increases the
worst-case interrupt latency periods for all the interrupts. While executing the critical section codes, if possible,
instead of disabling the interrupts only the task-switching flag changes should be used. 1t is done By using
semaphore. Thus, only the pre-emption by RTOS should be prevented. Disabling pre-emption may be better
than disabling interrupts. However, both increase worst-case interrupt latencies. -

Resource locking using the mutex semaphores or spin-locks may be better than disabling preemption or
interrupts (Section 8.10.3). A task should take the mutex semaphore only during a short period in %ﬁ:h the
critical section alone is executed and shared resources (such as the display device driver) are being agcessed.
Spin locks can also be used in case critical section code is short and executes in time less than the IPQ posting
and context-switching time (Example 8.20, Section 8.10.3). :

Design with Hierarchial and Scalable Limited RTOS Functions Use an RTOS, which is higrarchial
as well as scalable so that has only the needed functions are at the ported section of kernel with the|rest left
outside. This is because the pre-emption scheduling increases the interrupt latency periods because of the
time spent in context switching and saving and retrieving pointers for the RTOS functions like fnemory
allocation, and IPCs (Table 8.12).
The functions for the memory management, file system functions, IPC (e.g., pipe, signal, socket agd RPC)
are provided outside the kernel in a hierarchical and scalable RTOS. MMU is disabled for predictive gesponse
time of the tasks (Section 8.8). ‘
Hierarchical RTOS means the RTOS functions portable after extending and interfacing other fhnction-
alities and configuring for specific processor and set of devices. Scalable RTOS means portable finto the
system ROM image after the limited RTOS functions in the kernel space as per the application negds. For
example, if queue and pipe functions are not required in an embedded system design, then these funcians are
not ported in scalable RTOS.

8.9.2 Encapsulation Using the Semaphores and Queues

Semaphores, queues and messages should not be globally shared variables, and each should be shared petween
a set of tasks only and encapsulated from the rest. "

Semaphores A semaphore encapsulates the data during a critical section or encapsulates a buffer from a
reading task or writing into the buffer by multiple tasks concurrently. Example 7.14 showed the use ofja buffer
by producing task (writing into the empty memory addresses buffer) and consuming task (reading from the
filled spaces at the buffer). Example 8.15 gives another example. !
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Ext iple 8.15
Assang

2 that the Task Read-Amount reads the amount and after delivering the chocolate the amount is
redi céd by a value equal to the cost. The semaphore will insulate the global variable amount.

Vet & ****************************************************/

nt cost; /* The cost of the chocolate selected by the user from user input key*/

static jat amount; /* The amount variable */

/* Coge for creating semaphore SemAmount with initial value = 1 */

Task Read_Amount {.

while (1) {

0SYemPend (SemRead); /* Wait for message from Task User Keypad Input */

0SS a Pend (SemAmount); /* Wait for semaphore from amount reducing section in task Chocolate Delivery
*

/* 0 ode for action as per reading the Coins, get the value of coins in variable amount */
* punt > = cost) ‘
Post (SemChocolate) /* Post a semaphore to let the Task Chocolate delivery start if amount is

equ ! or more than the cost*/
OS$ePost (SemAmount);. /* Post a semaphore to let the Task Chocolate_Delivery reduce the amount by
ava ! ‘equal to the cost of chocolate after the delivery of the chocolate */
0OS$epiPost (SemDisplayThanks) /* Post a semaphore to let the Task_Display show the message, Wait
for { ‘ nice chocolate*/

I

bl
Tas¥ ocolate_Delivery {

whilekl) {

0OSSe : Pend (SemChocolate); /* Wait for message from Task Read_Amount */

/* Gogle for action for chocolate delivery */

0OS ‘ Pend (SemAmount) /* Wait for amount ready from Task Read_Amount.*/
am f = amount - cost;

OSS$emPost (SemAmount) /* Return the semaphore amount to Task Read_Amount.*/

OS§ efaPost (SemDisplayCollect) /* Post a semaphore to let the Task_Display show the
message, Thanks you, Collect the nice chocolate, Visit Again. */
}
} .
/** ; ***************************************************/
{amount when read by the task read amount, is encapsulated from the task chocolate delivery using the

j semaphore semAmount. The amount when reduced by the task chocolate delivery, is encapsulated
usirlg the semAmount.

Asshre that semAmount semaphore is not used for encapsulation of the amount. Let us see the effect. If
ISR yInputDev1ce (Example 8.12) executes on a user input before the amount reduces at task
cho@: ate delivery, the semKB will be posted and then taken by task read amount and it will pre-

empt he task chocolate delivery. Even if the user does not insert any coin, the task will wrongly

post mChocolate and SemDisplayCollect.
1
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Queues A queue can be used to encapsulate the messages to a task at an instance from the multip|
Assume that a display task is posted a menu for display on a touch screen in a PDA (Example

these messages are displayed, another task should be blocked from posting the messages.
We can write a task, which takes the input messages from other tasks and posts these message:
display task only after querying whether the queue is empty.

Multiple tasks can post the messages into the queue for display. When one task is posting the messAIes and

Example 8.16

yptpms

tasks.
.10.6).

to the

Consider a mobile phone device (Example 1.10.5). Assume that the Task ReadSMS and TaskSﬁez‘ted

Menu posts into a queue to Task_Display. The coding can be as follows. 3

/*********************************************#***********/

# define QMsgSize = 64 /*Assume that queue can be posted upto 64 pointer variables*/

4

# define QErrtMsgSize = 16 /*Assume that up to 16 error messages can be posted from the queue‘l |

OS_Event * QMsgPointer /* Create a event control block */
void QMsgPointer [QMsgSize] /* Define a pointer to the queue */
OS_Event * QErrMsgPointer /* Create a event control block for the queue of errormessages*/

e R

void *QErrMsgPointer [QErrMsgSize] /* Define a pointer to the queue */
QMsgPointer = OSQCreate (&QMsg [0], QMsgSize) ; /* Create a queue using call to RTOS fy
OSQCreate */
QErrMsgPointer = OSQCreate (&QMsg 0], QErrtMsgSize) ; /* Create a error messages queue UsH
to RTOS function OSQCreate */ ‘
Task_ ReadSMS { /* Code for the task which takes the SMS message as input */

while (1) {
0SQQuery (*QMsgPointer, QMsg);

If (QMsg = = (void *) 0) {OSQPost (*QMsgPointer, &SMSMsg); } /* Q contains no messages post

the SMS message into the queue*/

-

}

Task_Display { /* Code for the task which displays the messages */.
while (1) {

s

DispMsg = (void *) 0
while (QMsg ! = (void *) 0) {

&DispMsg = OSQPend (*QMsgPointer, 0, &QErrMsg), /* Wait for the messages at the queue i

messages read */
DispMsg ++;
-}

}
The messages are posted into the queue after querying whether it has no messages and
thus message pointer points to the null.

8.9.3 Hard Real-Time Considerations

Hard real time means strict adherence to each task deadline. When an event occurs, it should be servi
the predictable time at all times in a given hard real-time system. The preemption period for the hard
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task ih a worst case should be less than a few microseconds. A hard RTOS is one, which has predictable
perfotmance with no deadline miss, even in case of sporadic tasks (sudden bursts of occurrence of events requiring
atteptjon). Automobile engine control system and antilock brake are the examples of hard real-time systems.

Hadrd real-time systems provide for the following.

/1| Disabling of all other interrupts of lower priority when running the hard real-time tasks.

12| Preemption of higher priority task by lower priority tasks.

3| Some critical code in the assembly to meet the real-time constraint (deadline) fast.

4| Task running in kernel space. This saves the time required to first check whether access is outside the
memory space allocated to the kernel functions.

Provision of asynchronous 10s.

Provision of spin locks.

Predictions of interrupt latencies and context switching latencies of the tasks. This is achieved by
writing all functions which on execution always take the same time intervals in case of varying rates
of occurrences of the events.

8l Response in all the time slots for the given events in the system and thus providing the guaranteed task
deadlines even in case of sporadic and aperiodic tasks. Sporadic tasks means tasks executed on the
sudden bursts of the corresponding events at high rates, and aperiodic tasks mean tasks having no
definite period of event occurrence.

A lsoft real time is one in which deadlines are mostly met. Soft real time means that only the precedence
and skquence for the task operations are defined, interrupt latencies and context switching latencies are small
but tHere can be a few deviations between expected latencies of the tasks and observed time constraints and a
few deadline misses are accepted. The preemption period for the soft real-time task in a worst case may be
about a few milliseconds. Mobile phone, digital cameras and orchestra-playing robots are examples of soft
real-time systems.

-

8.9.4 Saving of Memory and Power

Methods of Saving and Optimizing the Memory Space

Following are the methods.
I. Use compressed data structure provided the de-compression algorithm plus compressed data structure
combined together take less memory in the system compared with the case when only unpacked data
structure is used.
. 4. Make the codes compact and fitted in small memory areas without affecting the code performance.
This is called memory optimization. Code means code compiled and assembled executable in the
given system. It also reduces the total number of CPU cycles, and thus, the total energy requirements.
3. Use declaration as unsigned byte, especially within the for and while loops, if there is a variable, which
always has a value between 0 and 255. When using data structures, limit the maximum size of the
queues, lists and stacks size to 256. Byte arithmetic takes less time than integer arithmetic.
Follow a rule that uses unsigned bytes especially within the for and while loops for a short integer if
i | possible, to optimize use of the RAM and ROM available in the system. Avoid if possible the use of ‘long’
integers and ‘double’ precision floating point value bytes especially within the for and while loops.
4. Avoid use of library functions if a simpler coding is possible. Library functions are the general functions.
Use of general function needs more memory in several cases.
Follow a rule that avoids use of library functions in case a generalized function is expected to take
more memory especially when its coding is simple.




5.

10.

. In case the software design can be made fast with the instruction set of the target processor, the as:tmbly

Configure the RTOS functions. For example, if queues are not needed the RTOS queue functigns are
not ported in the ROM image.
Use a configurable, scalable, hierarchical RTOS which will help the ROM image to execute the needed
functions at the kernel. :

- Optimize the RAM use for the stacks. It is done by three methods: (i) reducing the number of tasks that

interact with the OS, (i) reducing the number of nested calls and call at best one more functiof from
a function (one function calling another function and that calling the third and so on means hested
calls), (iii) optimize the number of tasks. (Less number of tasks are to be brought first into an injtiated
task list and there are the frequent interactions with the OS and context savings and retrievals stack on
context switching, thus giving more memory and time overheads.) This optimizes the use of the|stack.
As a rule reduce the use of frequent function calls and nested calls and thus reduce the time and RAM
memory needed for the stacks, respectively.

- Optimize the allocation of stacks. A method is that allocated stack areas on allocation are fillel with

the specific bytes or specific set of bytes. Then find that in worst cases of running of the embedded
system, how many filled bytes do not change. Then reduce the allocated stack spaces by rewriting the
task, buffer and other memory creation codes.

codes be used. This also allows the efficient use of memory. The device-driver programs in the assembly
especially provide efficiency due to the need to use the bit set—reset instructions for the control and| status
registers. Only a few assembly codes for using the device I/O port addresses, control and status regi
are needed. The best use is made of available features for the given applications. Assembly codi
helps in coding for atomic operations. A modifier register can be used in the C program for fast access
to a frequently used variable. If portAdata is frequently employed, it is used as follows, ‘register ungigned
byte portAdata’. The modifier register directs the compiler to place portAdata in a general pyrpose
register of the processor.

As a rule, use the assembly codes for simple functions like configuring the device control register,
port addresses and bit manipulations if the instruction set is clearly understood. Use assembly ddes
for the atomic operations for increment and addition. Use modifier ‘register’ in C program|for a
frequently used variable.

. Calling a function causes context saving on a memory stack and on return the context is retrieved.

This involves time and can increase the worst-case interrupt latency. There is a modifier inline. When
the inline modifier is used, the compiler inserts the actual codes at all the places where these opetators
are used. This reduces the time and stack overheads in the function call and return. But, this is at the
cost of more ROM being needed for the codes. If used, it increases the size of the program but|gives
a faster speed. Using the modifier directs the compiler to put the codes for the function (in curly
braces) instead of calling that function.
As a rule, use inline modifiers for all frequently used small sets of codes in the function or the opdrator
overloading functions if the ROM is available in the system. A vacant ROM memory is an uhused
resource. Why not use it for reducing the worst-case interrupt latencies by eliminating the time taken
in the frequent save and retrieval of the program context?
When a variable is declared static, the processor accesses with less number of instructions| than
from the stack. As long as shared data problem does not arise, the use of static (global) variables can be
optimized. These are not used as the arguments for passing the values. A good function is one that has
no arguments to be passed. The passed values are saved on the stacks in case of interrupt service calls
and other function calls. Besides obviating the need for repeated declarations, the use of global varfables
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will thus reduce the worst-case interrupt latency and the time and stack overheads in the function call and
return. But this is at the cost of the codes for eliminating shared data problem.

As a rule, use static (global) variables if shared data problems are tackled and use static variables in
case it needs saving frequently on the stack.

Combine two functions if possible. For example, the search functions fr finding pointers t a list item
and pointers of previous list items combine into one. If present is false the pointer of the previous list
item retrieves the one that has the item.

As a rule, combine whenever feasible two functions of more of less similar codes.

Use if feasible, alternatives to the switch-case statements, a table of pointers to the functions. This
saves the processor time in deciding which set of statements to execute in place of performing the
conditional tests all down a chain.

When usin C++, configure the compiler for not permitting the multi-inheritance, templates, exceptional
handling, new style casts, virtual base classes and namespaces.

As a rule, for using C++, use the classes without multiple inheritance, without template, with run-
time identification and with throwable exceptions.

.| When using Java, use the J2ME and configure the device classes.

As a rule, us J2ME with device configurations when programming small-devices code in Java.

Jded software designers can use various standard ways for optimizing the meory needs in the system.

dby mode in case the system is not used within a specified time interval and stop mode when the system
ed for long intervals. For example, mobile phone auto-switch off the LCD lights when not using for 5 or
10 seconds. A call attend mode can be switched off if there is no talk for over a minute.

current needed at any instant in the processor for an embedded system depends on the state and mode
brocessor. The following are the typical values in six states of the processor.

50 mA when only the processor is running; that is, the processor is executing instructions.

75 mA when the processor plus the external memories and chips are in a running state; that is, fetching
and execution are both in progress.

15 pA when only the processor is in the stop state; that is, fetching and execution have both stopped
and the clock has been disabled from all structural units of the processor.

15 pA when the processor plus the external memories and chips are in the stop state; that is, fetching
and execution have both stopped and the clock disabled from all system units.

5 mA when only the processor is in the waiting state; that is, fetching and execution have both stopped
but the clock has not been disabled from the structural units of the processor, such as timers.




the power dissipation and minimize the system energy requirement. Hardware designers should select a
processor with multiway cache units so that only that part of a cache unit gets activated that has the data
necessary to execute a subset of instructions. This also reduces power dissipation.

Reduce circuit glitches 1In a CMOS circuit, power dissipates only at the instance of change in finput.
Therefore, unnecessary glitches and frequent input changes increase power dissipation. VLSI circuit designs
have a unique way of avoiding power dissipation. A circuit design is made such that it eliminates all remqvable
glitches, thereby eliminating any frequent input changes.

Low-voltage operation modes  Another is to operate the system at the lowest voltage levels in the idle
state by selecting power-down mode in that state.

(1) The processor goes into a stop state when it receives a ‘stop’ instruction. The stop state also occurs|in the
following conditions: (i) On disabling the clock inputs to the processor. (ii) On stopping the external|clock
circuit functions. (iii) On the processor operating in auto-shutdown mode. When in the stop state, the progessor
disconnects with the buses (buses become in tri-state). The stop state can change to a running state. The tragsition
to the running state is either because of a user interrupt or because of the periodically occurring wake-up intefrupts.

(2) The processor goes into a waiting state either on receiving (i) an instruction for Wait, which sldws or
disables the clock inputs to some of the processor units including ALU, or (ii) when an external clock ¢ircuit
becomes non-functional. The timers are still operating in the waiting state. The waiting state changes fto the
running state when either (i) an interrupt occurs or (ii) a reset signals.

(3) Power dissipation reduces typically by 2.5 uW per 100 kHz reduced clock rate. So reduction from
8000 kHz to 100 kHz reduces power dissipation by about 200 W, which is nearly similar to when thejclock
is non-functional. [Remember, the total power dissipated (energy required) may not reduce. This is bdcause
on reducing the clock rate the computations will take a longer time at the lower clock rate and the total energy
required equals the power dissipation per second multiplied by the time]. The power 25 uW is typically the
residual dissipation needed to operate the timers and few other units. By operating the clock at lower fregpency
or during the power-down mode of the processor, the advantages are as follows: (i) heat generation reduces.
(i) radiofrequency interference also then reduces due to the reduced power dissipation within the jgdtes.
[Radiated RF (radiofrequency) power depends on the RF current inside a gate, which reduces due to in¢rease
in ‘ON’ state resistance between the drain and channel when there is reduced heat generation.]

(4) Low-voltage systems are built using LVCMOS (low-voltage CMOS) gates and LVTTL (low-vpltage
TTL). Use 0of 3.3V, 2.5V, 1.8 Vand 1.5 V systems and IO interfaces other than the conventional 5 V systems
results in significantly reduced power-consumption and can be advantageously used in the following cases.
(i) In portable or hand-held devices such as a cellular phone (compared with 5 V, a CMOS circuit power
dissipation reduces by half, ~(3.3/5)%, in 3.3 V operation. This also increases the time intervals needgd for
recharging the battery by a factor of two). (ii) In a system with smaller overall geometry, the low-vpltage
system processors and 1O circuits generate lesser heat and thus can be packed into a smaller space.




e Operating Systems

real-time programming by using ‘Wait’ and ‘Stop’ instructions and disabling certain units when not
 is one method of saving power during program execution. Operations can also be performed at
clock rate when needed in order to control power dissipation. Good design must optimize the
ting needs of low power dissipation and fast and effective program execution.

RTOS TASK SCHEDULING MODELS, INTERRUPT LATENCY AND
RESPONSE TIMES OF THE TASKS AS PERFORMANCE METRICS

Followiing are the common scheduling models used by schedulers.

R e A ol o

Cooperative scheduling of ready tasks in a circular queue. It closely relates to function queue scheduling.
Cooperative scheduling with precedence constraints.

Cyclic and round robin (time slicing) scheduling.

Preemptive scheduling.

Scheduling using ‘earliest deadline first’ (EDF) precedence.

Rate monotonic scheduling using ‘higher rate of events occurrence First’ precedence.

Fixed times scheduling.

Scheduling of periodic, sporadic and aperiodic tasks.

Advanced scheduling algorithms using the probabilistic timed Petri nets (stochastic) or multithread
graphs. These are suitable for multiprocessors and for complex distributed systems.

An RTOS commonly executes the codes for the multiple tasks as priority-based preemptive scheduler.

8.10/1 Cooperative Scheduling Model

First

consider a scheduling by a cooperative scheduler function by a simple example. Consider an embedded

systen] — an automatic washing machine. The system can be partitioned into multiple tasks. First three tasks

mul

are taj Al task A2 and task A3 in a set of tasks A, to Ay. Figure 8.2(a) shows the first three tasks of the

e process embedded software. The scheduler first starts the task A/ waiting loop and waits for the

message Al from task Al

1.

Task Al: The task is to reset the system and switch on the power if the door of the machine is closed
and the power switch pressed once and released to start the system. Task 1 waiting loop terminates
after detection of two events — (i) door closed and (ii) power switch pressed by the user. At the end,
task 1 sets a flag start_F, which is a message A/ to schedule task A2 to start executing code. This
message can be sent using semaphore function OSSemPost (start_F) (Section 7.7.1).

2.| Task A2: The scheduler waits for the message Al for start_F setting. The waiting can be by using

Fi
vario
task

semaphore function OSSemPend (start_F). If start_F posting event occurs at task 1, the task 2 starts.
A bit is set to signal water into the wash tank and repeatedly checks for the water level. When the
water level is adequate the flag water-stage1_F is set, which is a message A2 to schedule task A3 to
start executing code. This message can be sent using semaphore function OSSemPost (water-stagel_F).
| Task A3: The scheduler waits for the message A2 for the stage1_F setting. The waiting can be by using
semaphore function OSSemPend (water-stagel_F). If water-stagel _F posting event occurs at task 2
the task 3 wait ends and starts. A bit is set to stop water inlet and another bit sets to start the wash tank
motor. Then a flag, motor-stage1_F is set, which is a message A3, to the schedule the next task to start
| executing code. This message can be sent using semaphore function 0OSSemPost (motor-stagel_F).
¢ 8.2(b) shows the cooperative scheduling model. Figure 8.2(c) shows the task program contexts at
instances. Task Al context has a pointer for task A/, ADDR_A1. Task A2 context has a pointer for
. ADDR_A2. Task A3 context has a pointer for task A3, ADDR_A3.
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Fig. 8.2 (a) First three tasks in a set of tasks A, to A, into which the embedded software is bfoken
for the example in the text (b) Cyclic scheduling (c) Messages from the scheduler andl task
program contexts at various instances in washing machine tasks

The Cooperative Scheduling of Ready Tasks List  Figure 8.3(a) shows a scheduler in whith the
scheduler inserts into a list the ready tasks for sequential execution in cooperative model. Program counfer PC
changes whenever the CPU starts executing another process. Figure 8.3(b) shows how the PC changes on
switch to another context. The scheduler switches the context such that there is sequential execution of diffferent
tasks, which the scheduler calls from the list one by one in a circular queue.

Cooperative means that each ready task cooperates to let a running one finish. None of the tasks does dblock
anywhere during the ready to finish states. The service is in the order in which a task is initiated on mterru t and
placed in ready list. We can say that the task priority parameter sets as per its position in the queue.

Worst-case latency is the same for each task. It is t,,. It is time-period of the circular queue. The Jonger
the queue, the greater is the t,,,.. If a task is running, all other ready tasks must wait. For an i-th task, Jet the
event detection time when an event is brought into a list be dt;, switching time from one task to another be st
and task execution time be et;. Then if there are n tasks in the ready list, the worst-case latency with sche: ulmg
when including the ISRs execution times will be:

Tyore = {(dt; + st; + et; ), + (dt; + St;+ el )y +.. 4+ (dt; + st + et;), | + (dt; + st + et; ), } + g = Lot +{lisR-

Here the t;gp, is the sum of all execution times for the ISRs. Remember, the T, should always be lesk than
the deadline, T, for any of the task in the list (Refer to Section 4.6).

The Cooperative Scheduling of Ready Tasks Using an Ordered List as per Precedence
Constraints  Figure 8.4(a) shows a cooperative priority-based scheduling of the ISRs executed in thg first
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ponding tasks at an ordered list one by one. The scheduler using a priority parameter, taskPriority,
ordering of list of the tasks.

The pcheduler first executes only the first task at the ordered list, and the t,.,,, equals the period taken by
the firstitask on the list. It is deleted from the list after the first task is executed and the next task becomes the
first. THe insertions and deletions for forming the ordered list are made only at the beginning of each list.

Main ()

Call OS () 0S ()

!

* next *next | * next
task 1 task 2 task N
<«—————— Task in a List of Ready Tasks

(@

Program Counter Task N

G 7] Context

Assignments % 4 Switching
-

Tsk2 |

Task 1 Task 1

(b)

Fig. 8.3 (a) An OS scheduling in which the scheduler inserts into a list the ready tasks for a
sequential execution in a cooperative mode (b) Program counter assignments (switch) at
¢ | different times, when the scheduler calls the tasks one by one in the circular queue from
i | the list

Time

e first layer, an ISR has a set of short codes that have to be executed immediately. The ISRs run in the

that
inter
Let

in turn only from a priority-wise ordered list. The ordering is according to the precedence of the
t sources and tasks.
n De the priority of that task which has the maximum execution time. Then worst-case latencies for

+ st; + et )ljem + tigr}

1+ Sty + et)) , + (At + st + et) p +..+ (dl; + St + et )y + (Al + S8+ €8;)py + g

» P1» P2s -+ Pmy and py, are the priorities of the tasks in the ordered list. Also p; > p, > ... >p,. With
uler, it is easier, but not guaranteed, to meet the requirement that T, should be <T, for each task
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Process ISR1
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Fig. 8.4 (a) Cooperative priority-based scheduling of the interrupt service routines (ISRs) exécuted
in the first layer (top-right side) and priority-based ready tasks at an ordered list e)ﬂcuted
in the second layer (bottom-left) (b) Program counter assignments at different ti
the scheduler calls to the ISRs and the corresponding tasks

es on

Example 8.17

Consider the ACVM example (Section 1.10.2). First the coins inserted by the user are read, then th
chocolate delivers, and then display task displays ‘thank you, visit again’ message. Each task '
cooperates with the other to finish. The precedence of the task reading the coins is highest, then
of chocolate delivery and display for the ordered list of ready tasks.

8.10.2 Cyclic and Round Robin with Time Slicing Scheduling Models

Cyclic Scheduling An OS scheduler can let the system schedule the various tasks in real time as fi lbws:
let us assume that we have periodically occurring three tasks, the need for their service arises after perioIiéally.
Let the time-frames be allotted to the first task, the task executes at £, t; + Ty, 1+ 2 X Ty, - - - SECO hd task




é ‘Ej\e Operating Systems ;
frames af t,, t, + T,

,t+2Xx T, and the third task at t, £ + T, 13+ 2 " Ty - -- . Start of a time frame is the
cycle> 2 cycle 313 3 cycle:

schedulipg point for the next task in the cycle. Ty is the cycle for repeating the cycle of execution of tasks
in order |1, 2 and 3 and equals start of task 1 time frame to end of task 3 frame. T, is the period after which

the deadline. A cyclic scheduler is clock-driven and is useful for the periodic tas¥s I repeats the
schedul¢ decided after computations based on the period of occurrences of task instances. Each task has the

Ex s' le 8.18
(a) Gop ider the video and audio signals reaching at the ports in a multimedia system and processed. The
videb ftames reach at the rate of 25 in 1 second. The cyclic scheduler is used in this case to process video

and § dio with Teycle = 40 ms or in multiples of 40 ms.

(b) Copsider the orchestra-playing robots example (Section 1.10.7). First the director robot sends the

jc4l notes. Then, the playing robots receive and acknowledge to the director. In the next cycle,
er robot again sends the musical notes. The cyclic scheduler is used in this case to send

musijcgl
the 4 :.:a

tefeive signals by each robot.
c scheduling is very efficient for handling periodic tasks and when the number of tasks is small.

Robin Time Slicing Scheduling A task may not complete in its allotted time frame.
obin means that each ready task runs in turn only in a cyclic queue for a limited time slice Tgjc..
Tqice £ Teyele + N, where N = number of tasks. It is a swidely used model in traditional OS. Round robin is a
hybrid model of the clock-driven model (e.g., cyclic model) as well as event-driven (e.g., preemptive). A
real-time system responds to the event within a bound time limit and within an explicit time. A scheduler for
the timé-constrained tasks in the round robin mode can be understood by a simple example.

Suppose after every 20 ms, there is a stream of coded messages reaching at port A of an embedded system,
itis theq decrypted and retransmitted to the port after encoding each decrypted message. The multiple processes
of five tasks: C1, C2, C3, C4 and C5, as follows:
ask CI: Check for a message at port A every 20 ms.

2. [Task C2: Read port A and put the message in a message queue.
3. [Task C3: Decrypt the message from the message queue.
4, [Task C4: Encode the message from the queue.
5. [Task C5: Transmit the encoded message from the queue to port B.
Figure 8.5(a) shows five tasks, CI to C5, that are to be scheduled. Figure 8.5(b) shows the five contexts in
five time schedules, between 0 and 4 ms, 4 and 8 ms, 8 and 12 ms, 12 and 16 ms and 16 and 20 ms, respectively.

bring it|to the running state from its blocked state as soon as a timer triggers an event. If it is known that after
every 20 ms a byte reaches port A, a timer interrupt triggers an event every 4 ms. Task CI runs within 4 ms,
and C2|starts running.

re 8.5(b) shows at different time slices the real-time schedules, process contexts and saved contexts.
1. |At the first instance (first row) the context is C/ and task C1 is running.

2. |At the second instance (second row) after 4 ms, the OS switches the context to C2. Task C1 is finished,
C2 is running. As task CI is finished, nothing is saved on the task CI stack.
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Task C1 Task C2 Task C3 Task C4 Task C5

Check Read Decrypt Encode Transmit by

Message at! Port A Queue Queus Writing at

Port A and  Messages | Messages | PortB

Successive | Place it :

20 mS At Queue .

Task C1 to Task C5
(a)
Time Process Saved Task Task Task Task  Task
Context Context Cc1 c2 C3 C4 C5

04ms  Task C1 [— | JC ) C—1C ]
4-8 ms Task C2 v 1 [— 1 [ [
8-12ms Task C3 c2 Cy1C=23cC H I A )
12-16 ms  Task C4 C2,Cc3 v Lz [ 1 =1C_1
16-20ms Task C5 C2,C3,C4 L v 1= 11 C 1=

Started/Initiated ]
Blocked after Saving Context

Running [——]
Finished v ]
Time Slicing Scheduling by the OS Kernel

(b)

Fig. 8.5 (a) The tasks C1 to C5 round robin (b) Task program contexts at five instances in the|round

robin (time slice) scheduling scheduler for C1 to €5 with T, = 4 ms

3. At the third instance (third row), the OS switches the context to C3 on next timer interrupt, Which
occurred after 8 ms from the start of task CI. Task C/ is finished, C2 is blocked and C3 is rynning.

Context C2 is saved on task C2 stack because C2 is in blocked state.

4. At the fourth instance (fourth row), the OS switches the context to C4 on timer interrupt,| which

occurred after 12 ms from the start of task CI. Task C/ is finished, C2 and C3 are blocked an
running. Contexts C2 and C3 are at the tasks C2 and C3 stacks, respectively.

C4is

5. At the fifth instance (fourth row), the OS switches the context to C5 on next timer interrupt| which
occurred after 16 ms from the start of task C/. Task CI is finished, C2, C3 and C4 are blocked and C5

is running. Contexts C2, C3 and C4 are at the tasks C2, C3 and C4 stacks, respectively.
6. On atimer interrupt at the end of 20 ms, the OS switches the context to CI. As task C5 is finishet
the contexts C2, C3 and C4 remain at the stack. Task C/ is running as per its schedule.

,only

When a p-th task has high execution time, et,, the worst-case latency of the lowest priority task can exceed

its deadline. To overcome this problem, it is better that the OS defines a lower time slice for each task. '
ion or

task has codes in an infinite loop. Cyclic scheduling with time slicing is simple and there is no inse;
deletion into the queue or list. Figure 8.6(a) shows a programming model for cyclic time-sliced rou

Each

robin

scheduling. Figure 8.6(b) shows PC on context switches when the scheduler call to tasks at two consdcutive

time slices. Each task is allotted a maximum time interval = taice/N> Where tg; . is the time after which
(with the OS) interrupts and initiates a new cycle.
The OS completes the execution of all ready tasks in one cycle within a time slice, N x tyjice iN this

timer

Let T, o be the sum of the maximum times for the all the tasks if there are N tasks in all. Then, when tofice >

or =T, . the T, equals:
{(dt; + st; + et;) | + (dt; + 51, + et)) 5 +...+ (dt; + st, + et) n1 ¥ dt+ st +et) ) + tigp.
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Fig. 8.6 (a) The programming model for the cooperative time-sliced scheduling of the tasks (b) The
program counter assignments on the scheduler call to tasks at two consecutive time slices.
Each cycle takes a time of t;..

If N Xty equals the sum of the maximum times for each task, then each task is executed once and
finishes {n one cycle itself. When a task finishes the execution before the maximum time it can take, there
is a waiting period between the two cycles. The worst-case latency for any task is N x tg;... A task may
periodically need execution. The period for the required repeat execution of a task is an integral multiple of
tyice- FOrleach task to run only once, the N x t; .. should also be less that the greatest common factor of all the
task peripds. The estimation of response time for each task is easy in time slice cyclic round robin scheduling.
Considen a k-th task. The task responds within its task period plus the sum of the maximum times taken
during a fime slice from the task 1 to task (k-1). The response time of the m-th task at the end of the list is the
maximum.

An alternative model strategy can be the decomposition of a task that takes an abnormally long time to be
executed. The decomposition is into two or four or more tasks. Then one set of tasks (or the odd numbered

, the next state in the second cycle and so on. This task then reduces the response times of the
tasks that are executed after a state.
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Assume a VoIP [Voice Over IP] router. It routes the packets to N destinations from N sources. It
has N calls to route. Each of the N tasks is allotted a time slice and is cyclicaily executed fora
routing packet from a source to its destination. :

8.10.3 Preemptive Scheduling Model

Cooperative schedulers (described in Section 8.10.1) schedule such that each ready task cooperates|to let the
running one finish. However, a disadvantage of the cooperative scheduler is that a long execution |time of a
low-priority task makes a high-priority task wait at least until it finishes. There is a further disadvantage if the
cooperative scheduler is cyclic but without a predefined t;... Assume that an interrupt for service|from the
first task occurs just at the beginning of the second task. The first task service waits till all other rgmaining
listed or queued tasks finish (Section 8.10.1).

The time-slicing scheduler is simpler in design and extremely valuable in many applications whege there is
a need to use the resources of the embedded systems sequentially, or none of the tasks has a shorterj deadline
than the tg;c, or t... Round robin scheduler (described in Section 8.10.2) also give appropriate time slice to
let a task finish w1th the allotted time frame. Now consider the problem with round robin. Let there be N tasks

from task 1 to task N and let the assigned order of priority for interrupt servicing be from 1 (hi

a higher priority than the present one needs service at the end of an instruction during execution. If yed, then the
higher priority ISR or task is executed. Similarly, the RTOS preemptive scheduler can block a running task at the
end of an instruction by a message to the task and let the one with the higher priority take control of the CPU.
Now consider a preemptive scheduler by a simple example. Suppose there is a stream ¢f coded

messages reaching at port A of an embedded system. It then decrypts and re-transmits to port B after
encoding each decrypted message (recall Example 4.1). Figure 8.7(a) shows the tasks for the|multiple
processes of this application. Five processes are executed at five tasks, B/, B2, B3, B3, B4 and B5. Now consider
preemptive scheduling by a scheduler function by another example. Consider an embedded system f reading
a port A input and decrypting the input data, encoding it and sending it to another port B output. The s /stem can
be partitioned into multiple tasks. Five tasks are task BI, B2, B3, B4 and B5. Figure 8.7(a) shows th a;;mgned
functions to the task and ISR. The order of priorities is as follows.

1. Task BI: Check for a message at port A.

2. Task B2: Read port A.

3. Task B3: Decrypt the message.

4. Task B4: Encode the message.

5. Task B5: Transmit the encoded message to the port.

Figure 8.7(b) gives the symbols used to show the preemptive scheduling by the kernel pre-emptive cheduler

actions shown in Figure 8.7(c). A higher priority task takes control from a lower priority task. _hlgher
priority task switches into the running state after blocking the low priority task. The context saves of the pre-
emption. Figure 8.7(c) shows the following.
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At the first instance (first row) the context is B3 and task B3 is running.

At the second instance (second row) the context switches to B1 as context B3 saves on interrupt at port
A and task BI is of highest priority. Now task B/ is in a running state and task B3 isina blocked state.
Context B3 is at the task B3 stack.

.| At the third instance (third row) the context switches to B2 on interrupt, which occurs only after task
BI finishes. Task Bl is in a finished state, B2 in a running state and task B3 is still in the blocked state.
Context B3 is still at the task B3 stack.

At the fourth instance (fourth row) context B3 is retrieved and the context switches to B3. Tasks BI
and B2, both of higher priorities than B3, are finished. Tasks B/ and B2 are in finished states. Task B3
blocked state changes to running state and B3 is now in a running state.

.| At the fifth instance (fifth row) the context switches to B4. Tasks BI, B2 and B3, all of higher
priorities than B4, are finished. Tasks BI, B2 and B3, are in the finished states. B4 is now in a running
state.

At the sixth instance (sixth row) the context switches to B5. Tasks BI, B2, B3 and B4, all of higher
priorities than BS, are finished. Tasks Bl, B2, B3 and B4, are in the finished states. B5 is now in a
running state.
| Task B1 Interrupt Task B3 Task B4 Task BS
% Wait for Service Decrypt Encode Write the
< Interrupt Routine B2 Message Message Message
At Read Port A from A Again At
Port A Message Queue PortB
Task B1, B2, B3, B4, B5
(a)
States during different contexts one offer one
State v Finished
State ? Blocked
State Running
(b)
Preemptive scheduling by RTOS kerel
Process Task Task Task Task Task Saved
Context B1 ISR B2 B3 B4 BS Context
B3 ] L] —] [ —1
B1 —1 L] l ] L1 B3
B2 ] = ] L1 B3
B3 [V ] —1 1 —1
B4 ] /] =] 1
B5 ] (78 —]
B1 [ 1 ] [ ] L2 1] BS
B2 ] | 1 1 2] B5
B3 v 1 =l 1 ] B5
(0)
.7 (a) First five tasks B1 to B5 (b) The symbols used for the states in a preemptive scheduling

(c) The task program contexts at the various instances
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task B/ finishes. Task B/ is in a finished state, B2 in a running state and task BS is still in the
state. Context BS is still at the task B5 stack.
9. At the last instance (last row) the context is B3 and task B3 is running. The tasks B/ and B2 are in
finished state.
RTOS manages the processes and provides for preemption of lower priority process by higher priority
process. (Table 8.11). Let the priority of task_1 > task_2> task_3 > task_4.... > task N. Figure 8.8(a)|shows
the preemptive scheduling of N tasks. Figure 8.8(a) also shows the context switching whenever the process
switches from a task to the RTOS and from the RTOS to a task. Figure 8.8(b) shows PC assignments|on the
scheduler call to pre-empt task 2 when the priority of task_1 > task_2 > task_3.
Each task has an infinite loop from start (idle state) up to finish (refer to task 1, task 2 and task N, thred boxes
at the bottom of this figure). Last instruction of task 1 points to the next pointed address, *next. In case| of the
infinite loop, *next points to the same task 1 start. It is unlike a cooperative scheduler (Section 8.10.1), where it
signals the next task execution to the OS and OS now initiates and runs the next task in the ready list.
In a preemptive scheduler, there is an RTOS message during the running of task 2 to preempt the fask 2.
Figure 8.8(a) shows the sequence markings (1), (2) and (3) and Figure 8.8(b) shows program counter assighment.
Their meanings are as follows. In step 1, task 2 is run. The higher priority task 1 is initiated as follows:
1. Task 2 blocks and sends a message to the RTOS (step 2).
2. The RTOS now sends a message to task 1 to go to the unblocked state and run (step 3).
After task 1 blocks then RTOS makes the task 2 in the unblocked state. Task 2 now runs. When|task 2
blocks then RTOS makes task 3 in the unblocked state. Task 3 will run now.
Each task design is like an independent program, in an infinite loop between the task ready place dnd the
running task place. The task does not return to the scheduler, as a function does. Within the loop, the actiops and
transitions are according to the events or flags or tokens. The context switching may also occur on an ISR call.
We can define timeout for waiting for the token or event. An advantage of using time out intervalﬁ while
designing task codes is that worst-case latency estimation is possible. Any task’s worst-case latenc%s the

sum of the tigg and the intervals of all other tasks are of higher priority. Another advantage of using the time
outs is the error reporting and handling by the RTOS. Timeouts provide a way to let the RTOS run even the
lowest priority task in necessary cases. ;

Whenever the preemption event takes place, a task switching (a task place transition to its nning
place) becomes necessary, and the scheduler searches for the highest priority task at that instance. That only
is switched to the running place by the scheduler. Switching occurs when a taskSwitchFlag is sent to the Highest
priority task and not to the task that was running previously.

How can the context switching intervals reduce? The context switching intervals are reduced by thq static
declaration of the variables, as the static variables are RAM-resident variables and do not save on the stack on
a function call. When this is the case, on a call the PC and few must-save registers are saved. Task swifching
now does not lead to additional stack-saving overheads.

The conditions in which an event (token), the preemptionEvent, is generated for a task to undergo tragsition
from the running place to the ready place are as follows. .

- 1. The preemption event takes place when an interrupt occurs and just before the return from the interrupt,
there is a service call to the RTOS by the ISR. On this call to the RTOS, a token, the preemptionEvent,
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set. The task then undergoes transition to the place, readyTaskPlace, and runs only when asked by
scheduler (by sending taskSwitchFlag).

RTOS ()
—» Change of Program
Counter
Message for Ready Context Switch
andrun - ___]
Task 1 .Message to Preempt
- Task_2
3 y1
) )
2 . Task_2 Preempted by RTOS to Initiate
=7 an Higher Priority Task 1
next — | *next F
Task_1 Task_2 Task_N
~——————  List of ready Tasks >
@ Context
A Step 4 7] Switching t
Counter Preemptionby ~ *. (Blocked) of task 2 Task_3
Assignment RTOS =
) A
Various Block
Process Step 1 Task.2 "~ Task.2 Step 5
(Blocked) Time
(b)

Fig. 8.8 (a) Preemptive scheduling of the tasks (a running task is pre-empted and blocked to let a
higher priority task be executed). Note the sequence markings (1), (2) and (3). For meanings
of these refer to text (b) Program counter assignments on a scheduler call to preempt task
2. Priority of task_1 > task_2 > task_3

2. Each RTOS uses a system clock ticked by a SysClkIntr interrupt. The preemption event takes place
hen the SysClkIntr interrupt (real-time clock-driven software timer interrupt) occurs at the RTOS.
i this event RTOS takes control of the processor and checks whether it should let currently executing
. thsk continue or to preempt it to make way for the higher priority task. This event makes another
igher priority task ready to run, on the switch of the flag to the latter.
3. The preemption event takes place when any call to the RTOS occurs to enter the critical section or for
nding the task message (outputs) to the RTOS, and if another higher priority task then needs to be
rviced (take control of the CPU) (now the preemption is before entering the critical section).

i

Critical Section Service by a Preemptive Scheduler Critical section is a section in a system call
(OS fungtion), where there is no preemption by either ISRs or higher priority tasks. Critical section is also a
section in task to prevent preemption. A lock function executes before beginning of critical section and an
unlock function executes at exit from the critical section.
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Assume that a task / is waiting for a critical section resource, and task J is using a kernel lock at an #stance
because of the system call for lock by another task j. When task J executes unlock function, the task /waiting
for lock will run.

Assume that context switching time is large, for example, 1 ms, while the critical section rgsource
is required by the task for much shorter duration, then kernel lock is an inefficient mechanism fto lock
a critical section. A spin lock (Section 7.11.1) can be used to protect the critical section resoyrces as
follows.

Assume that task J is being provided the critical section resource through spin lock, s,,,. Assume that task
I needs the critical section resource at instance t,. The spin lock concept provides a busy wait loop fpr I (on
executing lock () function). The I goes at t; into a busy wait loop for the spin lock, sj,c. As soon as J feleases
the s, (on executing unlock () function at J), the /; gets the critical resource without spenting timg for the
context switch.

An implementation of the spin lock in a task can be by a try. The high priority task tries the lock by a wait
loop for the lock for a defined time t,,;, else the task un-blocks.

Another implementation of the spin lock can be by trying two or four wait loops for the lock with sugcessive
decrements in the time t,,;, to 0, after which the task un-blocks. After the unblocking, the task will run critical
section code without the context switch unlike the case when mutex is used to block or un-block g critical
section.

A lock function alternative is execution by taking a mutex and lock by releasing the mutex (Sections 7.7.2
and 7.8.3). Another implementation is by an instruction that disables a specific interrupt at the beginrjing of a
critical section and enables the specific interrupt at the end of the critical section.

A lock function can be used before a critical section. Spin lock is effective for the critical sectioi; /
short period of execution, because the busy wait loop will be released in a short time. A mutex can'ffe
for critical section that should run exclusively. Disabling and enabling of interrupts can be used to gravent
another ISR or process to run in-between. o

Example 8.20

(a) RTOS kemnels, for example, Windows CE, provide for pre-emption points. These are the OS
codes in-between the critical sections of kernel processes. :
(b) RTOS pCOS-1I provides function OS_ENTER_CRITICAL () to stop preempnon by any task pr
ISR, as it disables the interrupt. The RTOS provides function OS_EXIT_CRITICAL () to facili ok |
preemption by a high-priority task or ISR, as it enables interrupt. - i
(c) COS-II provides OSSchedLock ( ) and OSSchedUnlock () for task critical-section
locking to run the section and preventing preemption by other task.

ﬁm}tion

Two tasks may have two sections that share the data or resource and only one section must execute. Before
the critical section, a task waits for mutex semaphore from the scheduler and releases the mutex semaphore at
the exit from the critical section. Provisioning for priority inheritance permits critical section service by a pre-
emptive scheduler without priority inversion (Section 7.8.5).

Can work be done without the semaphores and/or mutex for the critical sections? Yes, one stfategy is
disabling and enabling the preemption. The disabling of a preemption means disabling only the task syitching
flags, or their passing to the task when using shared data and enabling the task switching flags to chgnge and
pass again after this. But it should then be ensured that all the ISRs are the reentrant functions.
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Fig. 8.9 The Petri net model for the task with a preemptive scheduler and one critical

section where it takes a semaphore and release on critical section over

Each task is in the idle state (at idleTaskPlace) to start with, and a token to the RTOS is taskSwitchFlag
= reset.

Consider the task_J_Idle place, which currently has highest priority among the ready tasks. When the
RTOS creates task_J, the place task_J_Idle undergoes a transition to the ready state, task_J_Ready
place. The RTOS initiates idle to ready transition by executing a function, task_J_create (). A transition
from the idle state of the task is fired as follows. RTOS sends two tokens, RTOS_CREATE Event and
taskJSwitchFlag. The output token from the transition is raskSwitchFlag = true (refer to the top-left
transition in the figure).

When after task J finishes, the RTOS sends an RTOS_DELETE event (a token) to the task, it returns
to task_J_Idle place and its corresponding taskJSwitchFlag resets (refer to the bottom-left transition
in the figure).
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. From the task_J_Running place, the transition to the task_J_Ready place will be fired when th

other tasks that are of lesser priority. This is because the system has only one CPU to procgss at
an instant.
task
finish flag sets (refer to the bottom-middle transition in the figure).
At task_J_Running place, the codes of the switched task J are executed (refer to the top-right{most
transition in the figure).

. At the runningTaskPlace, the transition for pre-empting will be fired when RTOS sends a tpken,

suspendEvent. Another enabling token if present, time_out_event will also fire the transitiop. An
enabling token for both situations is the semaphore release flag, which must be set. Semaphore rglease
flag is set on finishing the codes of task J critical sections. On firing, the next place is task_J_Blocked.
Blocking is in two situations. One situation is of preemption. It happens when the suspendEvent
occurs on a call at the runningTaskPlace asking the RTOS to suspend the running. Another sitjation
is a time out of an SWT that associates with the running task place.
On a resumeEvent (a token from RTOS) the transition to task_J_Running place occurs (refer {o the
right-side middle transition, which is between the three transitions that are shown in the figure).
At the task_J_Running place, there is another transition that fires so that the task J is back af the
task_J_Running place when the RTOS sends a token, take_Semaphore_Event to ask the task J t¢ take
the semaphore (the RTOS sets the semaphore request flag, take_Semaphore_Event; it resets semaphore
release flag; it directs task J to run un-interrupted. Do not block).

There can be none or one or several critical sections. During the execution of a critical sectiof, the
RTOS resets the semaphore release flag and sets the take semaphore event token.

8.10.5 Earliest Deadline First (EDF) precedence and Rate Monotonic

Schedulers (RMS) Models

The event-driven schedulers are required for real-time scheduling in case of a number of tasks being large or
in case of aperiodic or sporadic tasks. Aperiodic task is one in which the period of occurrence is not khown
because it may not be known when an cvent can occur. For example, an event of receiving a phone all is
aperiodic event. Sporadic task has periods of bursts when the task events occur.

A deadline is the period in which a task must finish. A task, which has a least deadline that is whigh has

little time left for completion, must be scheduled first. This algorithm of the scheduler is known as
algorithm.

does not assign any priority. It computes the deadline left at a scheduling point. Scheduling point is an in
at which the scheduler blocks the running task and re-computes the deadlines and runs the EDF algorith
finds the task to be run.

An EDF algorithm can also maintain a priority queue based on the computation when the new task if

EDF precedence When a task becomes ready, its will be considered at a scheduling point. The sch%:uler
t

Another EDF algorithm can also maintain two or more priority queues based on the relative deadlines
scheduler inserts the new task into one of the queues.

When the number of tasks becomes large, the computation complexity increases for insertion into the q‘ueue.

EDF

ance
and

serts.

d the
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Precedence Assignment in the Scheduling Algorithms The best strategy is one, which is based
on EDF precedence. Precedence is made the highest for a task that corresponds to an interrupt source, which
occuts at the earliest and which deadline wili finish the earliest.

How is the precedence assigned in the case of variable CPU loads for the different tasks and variable
EDF$? One method is as follows.

Létt, be the instance when task I needs preemption the first time and t, be the next instance. A task with
minimum (t, — t,) is inserted at the top of the task priority list. It is assigned the highest precedence. The list

Altask occurring at a higher rate should then get higher precedence in case of a periodic tasks. Assume that
the data is being received from multiple channels and some channel receive data at a faster rate than the
othems. A scheduler uses rate monotonic algorithm (RMA) to schedule the tasks in this case.

Rate Monotonic Scheduler RMS computes the priorities, p, from the rate of occurrence of the tasks.
The &-th task priority, p; is proportional to (1/t;) where t; is the period of the occurrence of the task event. RMA
giveq an advantage over EDF because most RTOSes have provisions for priority assignment. Higher-priority
tasks|always get executed.

RMA disadvantage is that it does not support aperiodic and sporadic tasks. When a burst occurs, even due
to higher rate of arriving of the sporadic task in the burst period, it cannot be assigned high priority. The
aperipdic and sporadic tasks can be assigned the tickets by aperiodic and sporadic servers in the scheduler.
Ticket means the periods in which the events from them will be scheduled.

RMA disadvantage is that a task may have long periods, but can be very critical. It will be assigned least
priorjty. A solution is to divide the very critical task into two or more tasks to raise their allocated priority by
the RMA.

.6 Fixed (Static) Real-Time Scheduling Model

can thus assign each task a fixed schedule. Each task undergoes a ready place to running place transition on the
timeguts of the corresponding timer. The OS is supposed to define hard real-time schedules for each task.

Alscheduler is said to be using a fixed-time scheduling method when the schedule is static and deterministic.
The Working environment is unaltered when processes are scheduled on the single CPU of the system. Schedules
are deterministic as the worst-case latencies for all the interrupts and the tasks are predeterminable. The OS
schedluler can thus schedule each task at fixed times so that none misses its deadline (this is when the worst-
case Jatency of each task is less then its deadline for its service). The ‘no deadline miss’ advantage is feasible
only|in deterministic situations. Coding for the tasks are such that execution times do not vary under the
different inputs or different conditions.

S¢hedules once defined remain static in a fixed-time scheduler. Fixed schedules can be defined by one of

the three methods.
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1. Simulated annealing method. Here the different schedules can be fixed and the performance simujated.

Now, schedules for the tasks are gradually incremented by changing the interrupt timer seftings

(using a corresponding OS function) till the simulation result shows that none is missing its deaglline.

2. Heuristic method. Here, reasoning or past experience helps to define and fix the schedules.

3. Dynamic programming model. This is as follows: a specific running program first determines the schedules

for each task and then the timer interrupt loads the timer settings from the outputs from that pro .

If the scheduler cannot fix the schedules, it is a non-deterministic situation. An example is a situation in

which a message for a task is expected in a network, from another system and the minimum and maxjmum

periods for receiving it are unknown. Another example is when the inputs for a task are expected|from
another system and the minimum and maximum periods when the inputs will be received are not known.

A dynamic scheduling model is as follows: the software design may be such that the priorities be
rescheduled and fixed times redefined when a message or error message is received during the run.
8.10.7 Latency and Deadlines as Performance Metric in Scheduling Models

For Periodic, Sporadic and Aperiodic Tasks

An RTOS should quickly and predictably respond to the event. It should have minimum interrupt latency and
fast context switching latency.
Different models have been proposed for measuring performances. Three performance metrics are as follows.
1. Ratio of the sum of interrupt latencies with respect to the sum of the execution times.
2. CPU load.
3. Worst-case execution time with respect to the mean execution time.

‘Interrupt latencies’ in various task models can be used for evaluating performance metrics. The latdncies
for various task scheduling models are described in Sections 8.10.1 to 8.10.3. The CPU load is another way to
look at the performance. It is explained in Section 8.10.8. Worst-case performance calculation for a sp‘lradic
task is explained in Section 8.10.9. ‘Refer Real Time Systems’ by Jane W. S. Liu, Pearson Education, P000,
for details of many models available for evaluating the performances.

8.10.8 CPU Load as Performance Metric

Each task gives a load to the CPU that equals the task execution time divided by the task period. [Task geriod
means period allocated for a task.] Recall In_AOut_B intranetwork of Example 4.1. Receiver port A expects
another character before 172 is. Task period is 172 ps. If the task execution time is also 172 s, the CPU load
for this task is 1 (100%). The task execution time when a character is received must be less than 172 ps| The
maximum load of the CPU is 1 (less than 100%). :

The CPU load or system load estimation in the case of multitasking is as follows. Suppose there pré m
tasks. For the multiple tasks, the sum of the CPU loads for all the tasks and ISRs should be less that‘l‘jér The
time outs and fixed-time limit definitions for the tasks reduce the CPU load for the higher-priority tagks so
that even the lower-priority tasks can be run before the deadlines. What does it mean when the sum of the
CPU loads equal to 0.1 (10%)? It means that the CPU is underutilized and spends 90% of its time in a whiting
mode. As the execution times and the task periods vary, the CPU loads can also vary.

When a task needs to run only once, then it is aperiodic (one shot) in an application. Scheduling ¢f'the
tasks that need to run periodically with the fixed periods can be periodic and can be done with a CPU load
very close to 1. An example of a periodic task is as follows. There may be inputs at a port with predetertnined
periods, and the inputs are in succession without any time gap. '
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Wheh a task cannot be scheduled at fixed periods, its schedule is called sporadic. For example, if a task is
expeatetl to receive inputs at variable time gaps, then the task schedule is sporadic. An example is the packets
from th routers in a network. The variable time gaps must be within defined limits.

A pieemptive scheduler must take into account three types of tasks (aperiodic, periodic and sporadic)

An aperiodic task needs to be preempted only once.

2. |A periodic task needs to be preempted after the fixed periods and it must be executed before its next
preemption is needed.
3, |A sporadic task needs to be checked for preemption after a minimum time period of its occurrence.
sually, the strategy employed by the software designer is to keep the CPU Joad between (0.7 + 0.25)
for sporadic tasks.
8.10.9 Sporadic Task Model Performance Metric
Let us gonsider the following parameters.

Tyt i the total length of the periods for which sporadic tasks occur; e is the total task execution time; T,,
ean periods between the sporadic occurrences; Ty, is the rinimum period between the sporadic

P =P worst™ (e * Ttotal / Tav )/ (e * Tlotal / Tmin)'

because the average rate of occurrence of sporadic task is (T / T,,) and the maximum rate of
task burst is Ty / Tpin- ’

wdiare various models to define a performance metric. Three performance metrics for schedule
jaement by the RTOS are: (i) interrupt latencies with respect to the execution times, (ii) CPU load and
prst-case execution time. ‘

OS SECURITY ISSUES

When b doctor has to dispense to multiple patients, protection of the patients from any confusion in the
medicdtion becomes imperative. When an OS has to supervise multiple processes and their access to the
resour¢es, protection of memory and resources from any unauthorized writes into the PCB or resource, or
mix up of accesses of one by another becomes imperative. The OS security issue is a critical issue.

Each process determines whether it has a control of a system resource exclusively or whether it is isolated
from the other processes, or whether it shares a resource common to a set of processes. For example, a file or
memoty blocks of a file will have exclusive control over a process and a free memory space will have the
access|to all the processes. The OS then configures when a resource is isolated from one process and a
resour€e is shared with a defined set of processes.

Thd OS should also have the flexibility to change this configuration when needed, to fulfil the requirements
of all the processes. For example, a process has control of 32 memory blocks at an instance and the OS
configpires the system accordingly. Later when more processes are created, this can be reconfigured.

The OS should provide protection mechanisms and implement a system administrator(s)-defined security
policy| For example, a system administrator can define the use of resources to the registered and authorized
users {and hence their processes).
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for resources is a challenging issue before any OS software designer. The network environment complicates
this issue.
Table 8.13 gives the various activities for implementing important security functions.

Table 8.13 Important Security Functions

- r p—
Function ' Activities ;

Controlled resource sharing Controlling read and write of the resources and pafametcrs by user p: et
For example, some resources write only for a process and some read only
set of processes. #

Confinement mechanism Mechanism that restricts sharing of parameters to a set of processes orily. |
Security policy (strategy) Rules for authorizing access to the OS, system and information. A policy :

is a communication system having a policy of peer-to-peer commu
(connection establishment preceding the data packets flow).

Authentication mechanism External authentication mechanism for the user and a mechanism to prexe gt an
application run unless the user is registered and the system administra i has
(software) authorized . Internal authentication for the process, and the giokess
should not appear (impersonate) like other processes. User authenticatign|can
become difficult if the user disseminates passwords or other authendi Fagion
methods. {

Authorization mechanism User or process allowed using the system resources as per the securi folicy.

Encryption A tool to change information to make it unusable by any other user ori ; oFess

without the appropriate key for deciphering it.

for an OS security and protection mechanism.

@ Summary E #——-

® Akemel is a basic unit of any OS that includes the functions for memory allocation and de-atlocation, pre
unauthorized memory access, tasks scheduling, IPC, /O management, interrupts-handling mechanism and§ ayice
drivers and management. The OS also controls I/O and network subsystems. An OS kernel may also hy
management functions and functions for network subsystems (these functions may also be separate froms
kernels in certain OSes).
* AnRTOS has functions for real-time task scheduling and interrupt latency control. The RTOS uses the timeysja
system clocks. Its functions include time allocation and de-allocation to attain the best utilization in presghce of
timing constraints to the tasks. 11
® RTOS uses asynchronous IO functions so that the tasks do not block during the IOs. “
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-priority task run.

slicing means that-each task is allotted a time slice after which it blocks and waits for its turn on the next

e. In certain cases, other strategies for scheduling, forexample, lhe cooperative scheduling of the multiple

s as per interrupt sequences, and time slicing can be used.

A OS has functions for handling mtemptsThercarethreealtemanvewaysusedmtheRTOS&forrcsponse
Bardware source calls from the interrupts. Ani(fOShasﬁmﬁonsforregistennganddefeg:stenngadewce

and also facilitates concurrent processing of the modules, devices, ISRs and tasks.

OS has mutexandspm lockﬁnmonsformnmlmmhandlmgmpnonty scheduhngcases RTOS may

» hwsymhmmhmmwhmmimﬁe%ksm&e%mﬂmedﬁaﬂemngwdsymhmmn
laviour in the system. RTOS provide for IPC functions (signals, semaphores, mutexes, queues, maﬁboxes,
ps and sockets). There is standardization (e.g., POSIX 1003.b) of the RTOS and IPC functions. :
vennﬁngofdwvmmmmmmmapreempﬁwwhemﬂerhelpsusmopumzemepmccssmngsman
cation developed using an RTOS.
nsesthemskmmnngmﬂ:ek«nelspacewlctthecodecwcutcmﬂaesupemsoxymandthmexwme
due to'no. instructions for memory leak and stack: overflow checks and kernel space protection check) and
e the interrupt latencies.

uses fixed memory block allocation with predxctablemmmyaﬂocanonandde»aliocmon time.

'security issues are important considerations in a system and the protection of memory and resources-or PCB
i any unauthorized write is essential.

{j% Keywords and their Definitions

As p ronaus 10s : I0s in which a process is not blocked due to 10.
rative scheduling : A waiting task lets another task run till it finishes.

i&al section run : In spite of higher pnonty a critical section is allowed to run by a scheduler
: using the semaphore or spin-lock or lock functions. The critical secuon is used
for shared resources and data between multiple tasks.

A scheduling algorithm in which the tasks are cychcally scheduled in sequence
from a list of ready tasks. A time slice is provided in case of round robm cycle.

A scheduling strategy in which the time for each task is ﬁxed

A system in which no task should delay and miss the deadline, the system have
minimal interrupt latencies and well-defined time-constraints for each task.

A basic unit of any OS that includes the functions for processes, memory, task
scheduling, IPC, management of devices; 10s and interrupts and may include
the file systems and network subsystems in certain-OSes.
Aﬁmcmntolockmeavaﬂabzhtyofresourcestoothertasksatbegxmmgof
critical section codes.

o4 | :  Asystem having basic kernel functions of process and memory management, file,
10, device and network management functions and many-other functions also.
Pre-dmpting scheduling : A scheduling algorithm in which a higher-priority task is forced (pre-empted)

] to block by the scheduler to let a-higher-priority task run.
Protrion mechanism : A mechanism at an‘OS to protect against unauthorized accesses to the resources.

i ??



Rate monotonic sehedah’n‘g i A'scheduling in which tasks aré assigned mion&es in accordance with .":

L.
2.
3.
4.
5.
6.
7.
8.

10.
11,

12.
13.
14.
15.
16.
17.
18.
19.
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Review Questions

What should be the goal of an OS?

List the layers between application and hardware.

Why does an OS function provide two modes, user mode and supervisory mode?
List the functions of a kernel. What can be the functions outside the kernel?

of occurrences of need of their services.
RTOS ,‘:“OSforsoftmhardrealume&skswimtaskscheduhngthhreal-mne offrints
' T : (deadlines) using priority based scheduling, mterrupt—latency rol,
.. synchronization of tasks with IPCs and predxctable timing and synch ion
! bchamourofthesyswm [
Rmmdrobm :~~‘Ascbeduhngalgmthmmwmchtasksmscheduledmtheachone a
. time slice aad run in cyclic in sequence, . .. .
Soﬁ real'nme system ;A system in which most not all tasks meet the time constraints and do #8t fniss
: » : o deﬂdlmeandannsscmbehaﬂ&edwimsomedelay :
Spin lock e f.\Ammplementauonofthespm lock in a task can be by a try. The task §fed the
i " ‘ lockbyawmtloopforthesmforadeﬁnedumtm,elsethetask beks
for the s34 i
Time slicing scheduling - . It is also called round robin schedulmg A scbeduhng algorithm in wh bach
» O : = ‘tasklsallomdaumeskceafterwmmrtmblocked ‘and waits for its tutiijos} the
; next cycle.
Unlock - L bvion 1 rclease the lack 6 660 07 the erkical section
-

Explain the terms process descriptor and process control block (PCB). What are the analogies in a PCB arid TCB?

When is a message used and when does a system call for seeking access to system resources?
Process or task creation and management are the most important functions of the kernel. Why?

A strategy is that the tasks are created at start-up only and creating and deleting tasks later is avoided . Wh;
it be adopted?

y should

Memory allocation and management are the most important functions of the kernel. Why? How does memory

allocation differ in RTOS and OS? What is memory locking?
List the advantages and disadvantages of fixed and dynamic block allocations by the OS.

The kernel controls the access of system resources, CPU, memory, IO subsystems and devices. Why is it
Explain the critical section handling with mutexes and spin locks.

What is the importance of device management in an OS for an embedded system?
Give examples of IO subsystems. Explain the use of asynchronous IOs.

Define a network OS. How does a network OS differ from a conventional OS?

What are the uses of OS interoperability and portability?

How do you choose scheduling strategy for the periodic, aperiodic and sporadic tasks?
What are the OS functions at an RTOS kernel?

When do you use cooperative scheduling and when preemptive?

needed?

Comapre two scheduling strategies for the real-time scheduling — preemptive mode and round robin schfdulmg
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22.
23.

24,
25.
26. |

39.

40. |
41.
42.
43. |
44,
45.
46.
47.
48.
49.
50.
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{
. What are the cases in which time-slice scheduling helps?

i§t three ways in which an RTOS handles the ISRs in a multitasking environment. What is the advantage of two-
orfthree-level handling of the interrupts? Explain IST.

gw does a preemption event occur?

dal-time system performance metrics are throughput, interrupt latencies, average response times and deadline
sses. Explain the importance of each of these metrics.

y should you estimate worst-case latency?

hat should be the OS security policy?
at is the protection mechanism for the OS?

. S ow how will you use the mailboxes between display task and other tasks. Which one should you prefer, use of
seynaphore as shown in the example or use of mailbox.

een at different points on the screen are handled by an RTOS using two-level ISR handling.

e a table showing the differences between three methods of ISR handling in the RTOSs.

% ow the use of 15 points for the principles of RTOS-based design by taking the example of ACVM.

L Kt the priority allocations in ACVM tasks.

ES ow the use of 15 points for the principles of RTOS-based design by taking the example of digital camera.

p ve the priority allocations in camera tasks.

'§how the use of 15 points for the principles of RTOS-based design by taking the example of mobile phone device.
F ve the priority allocations in phone tasks.

iShow the scheduling method that RTOS can use in case of the VoIP router.

Gjve the priority allocations in smart card tasks.

SHow the use of semaphores for synchronizing the tasks as cooperative scheduled tasks in a preemptive RTOS.
s

t

ow the use of semaphores and timer functions for synchronizing the tasks as round robin time-sliced scheduled
ks in a preemptive RTOS.




REAL-TIME OPERATING
SYSTEM PROGRAMMING-I:
MicroC/0S-Il and VxWorks

We have learnt the following important points relating
to the traditional OS and RTOS.

e e Process is that computational unit which an OS
schedules and on request, either by system call or
by message passing, the OS lets the process use the
resources: CPU, memory, 10 subsystems, flash-

c memory file system, network subsystems and device
drivers. Process also means ‘task’ in a multitasking
model of the processes and means ‘thread’ in a
multithreading model of the processes, both

a controlled by the OS. A process can also consist of
several threads, which share a common process
structure.

[ e System structure consists of application software,

APIs, additional system software than the one
provided at the OS, OS interface, OS, hardware-
OS interface and hardware, and an OS or RTOS.

[ e The application software and APIs are programmed
for processes (tasks) and ISRs, ISTs.
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e The priorities when executing codes are first the ISRs, then ISTs and
then threads of the processes.

e The basic functions (services) of the OS are process management (also
means thread management or task management) from creation to
deletion, processing resource requests, memory management from
allocation and de-allocation, process scheduling, processing and man-
aging IPC (communication among the ISRs, tasks and OS functions),
IO subsystems management, management of the file, 10, device, and
device drivers and functions for enabling sharing of resources and data.

e Handling of interrupts and scheduling of tasks by the RTOS.

e RTOS has the basic functions of the OS plus functions for real-time
task scheduling and interrupt latency control. RTOS uses the timers
and system clocks, time allocation and de-allocation to attain best
utilization of the CPU time under the given timing constraints for
the tasks.

e RTOS provides a predictable timing behaviour of the system (in most
cases) and a predictable task synchronization using the priorities alloc-
ation and priorities inheritance. RTOS provides for synchronization
of ISRs, ISTs and tasks using the IPCs for the hard and soft real-
time operations. RTOS provides for asynchronous IOs.

o Interprocess synchronization during concurrent processing of the
tasks takes place through signals, semaphores, queues, mailboxes,
pipes, sockets, RPCs, timer and event functions.

e Basic strategies for scheduling the multiple tasks are pre-empting,
round robin time slice and cooperative scheduling. The RTOS basic
strategy is preemptive scheduling.

e Principles of basic design using the RTOS, and important points that
are taken care of during coding for synchronization between the
processes (ISRs, functions, tasks and scheduler functions).

The goals of any embedded software, and hence of RTOS, are perfection
and correctness. The reader must have now realized that there is a great
deal of functions involved in real-time programming. The objective of
this chapter is to explain thoroughly the two popular RTOSes that are
used for programming and provide the OS functions which, significantly
reduce the time required to design an embedded system.
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We will learn the following in this chapter.

(i)

Basic functions and types of RTOSes.

(ii) RTOS uCOS-II (referred as MUCOS in the text) through 20 examples—

(iii)

Chapter 10 will describe the Windows CE, OSEK and real-time Linux (R

~ 9.1 ~ BASIC FUNCTIONS AND TYPES OF RTOSes

A complex multitasking embedded system design requires the following:

1.

S o

8.
9.

Examples 9.1 to 9.20. What arguments are passed and what values are
for each given MUCOS function will be explained. Learning th
Sfunctions in the MUCOS is important for a reader even if another
used later. This will help greatly in understanding the advanced, soph
embedded RTOSes later on.

returned
b use of
RTOS is
sticated

VxWorks from Wind River® Systems is also an RTOS for sopl;‘lzticated

embedded systems. It has powerful tool support. The features in Vx
explained by seven examples— Examples 9.21 to 9.27. Differences
the VxWorks semaphores, mailboxes and queues with respect to that of
will be made clear.

rks are
between
MUCOS

VLinux).

Integrated development environment

Task functions in embedded C or embedded C++
Real-time clock-based hardware and software timers
Scheduler

Device drivers and device manager

Functions for IPCs using the signals, event flag group, semaphoretjlandling

functions and functions for the queues, mailboxes, pipe and socke
Additional functions, for example, TCP/IP or USB or Bluetooths orf
IrDA and GUIs.

Error and exception handling functions.
Testing and system debugging software for testing RTOS as well as dd
embedded application.

WiFi or

veloped

Figure 9.1(a) shows the basic functions expected from the kernel of ag RTOS.

The RTOS’s have the following features in general.

1.

SR

Basic kernel functions and scheduling: pre-emptive or pre-emptive g
slicing.

Priorities definitions for the tasks and IST.

Priority inheritance feature with option of priority ceiling feature.
Limit for number of tasks.

Task synchronization and IPC functions.

IDE consisting of editor, platform builder, GUI and graphics s
compiler, debugging and host target support tools.

Device imaging tool and device drivers.

lus time

bftware,
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Basic Functions in
an RTOS
[
[ I I I [ I I !
Kdmel Service Device Time and Ermor Task ISR and IST Memory
(Scheduler) and System Driver, Delay Handling State Functions  Functions
Clock Network  Functions  Functions  Switching
Functions  Stack and Functions IPC
Sendand Watchdog Functions
OS Initiate Receive  Timers
and Start Functions
Function [7 T
Create Query  Get Put
i
r [ I I I I |
Signal or Semaphore Queue Mailbox  Pipe Socket RPC
Exception
(@
Some Options for
an RTOS
I
M I I ! f [ I | I
Qwn Linux pCOS-i VxWorks  Windows Symbian QNX VRTX PalmOS
RTOS 2.6x CE,
for RTOS Windows
mall FUNCTIONS Mobile
. Ycale or
Bmbedded  RT Linux
Jystem
¥ (b)
Fig. 9.1 (a) Basic functions expected from the kernel of an RTOS (b) Common options available for
selecting a real-time operating system (RTOS)

8] Support to the clock, time and timer functions, POSIX, asynchronous 10s, memory allocation and
deallocation system, file systems, flash systems, number of processors, TCP/IP, network, wireless and
bus protocols, development environment with Java and componentization (reusable modules for different
functions), which leads to small footprint (small-sized RTOS codes placed in the ROM image).

9! Support to number of processor architectures.

Seftion 9.1.1 gives the host-target and self-host approaches to development of an application. Section 9.1.2
gives fthe types of RTOSes.

9.1.1 Host and Target-Based, and Self-Host-Based Development Approaches

A real-time or non-real-time application-development approach is the host target approach. A host machine
(computer) for example, a PC uses a general purpose OS, for example, Windows or Unix for system development.
The farget connects by a network protocol, for example, TCP/IP during the development phase.
Theé developed codes and the target RTOS functions first connect a target. The target with downloaded codes
finally disconnects and contains a small-size footprint of RTOS. For example, the target does not download host
machine resident compiler, cross-compiler, editor for programs, simulation and debugging programs and
MMU support.



410 S : Embedded

The self-host development approach is that the same system with full RTOS is used for devel
on which the application runs. This also does not require cross-compilation. When application codes are
the required RTOS function codes and application codes are downloaded into the ROM of the target

9.1.2 Types of RTOSes
Some options for selecting an RTOS are shown in Figure 9.1(b). Followings are the types of RTOSes|

ment
eady,

In-House Developed RTOS In-house RTOS has the codes written for the specific need, and applitation
or product and customizes the in-house design needs. Generally either a small-level application devgloper
uses the in-house RTOS or a big research and development company uses the codes built by the inthouse

group of engineers and system integrators.

Broad-based Commercial RTOS A readily available broad-based commercial RTOS package offers

the following advantages.
1. Provides an advantage of availability of off the self thoroughly tested and debugged RTOS funct]

ons.

2. Provides several development tools. Development tools consist of tools for the source-code engineering,
testing, simulating and debugging are also available with the RTOS package. When designing a mission
critical real-time application, lack of appropriate error-handling capability or an appropriate RTDS or

a testing and debugging tool causes data loss. Even hardware loss may be caused.

. Support to many processor architectures, for example, ARM as well as x86, MIPS and SuperH.

. Support to development of GUIs in the system.

. Support to device software optimization (DSO). It is a recently available concept in a few RTQSes.

3
4
5. Support to many devices, graphics, network connectivity protocols and file systems.
6
7

. Provides error and exceptional handling functions, which can be ported directly as these are
well tested by thousands of users.

eady

8. Not only simplifies the coding process greatly for a developer but also helps in building a produgt fast;

it aids in building robust and bug-free software by thorough testing and simulation before locati
codes into the hardware.

g the

9. Saves large amount of development time for RTOS tools and in-house documentation. Saving of time

results in little time to market an innovative and new product.
10. Saves maintenance cost.
11. Saves cost of keeping in-house engineers.

not componentized. Footprint (the code that goes as ROM image) is not reducible. The tasks are not assi;
priorities. They offer powerful GUISs, rich multimedia interfaces and have low cost.

The general purpose OS can be used in combination with the RTOS functions. For example, RTLiny
real-time kernel over the Linux kernel. Another example is ‘Windows XP Embedded’ for x86 architeg

General Purposes OS with RTOS Embedded Linux or Windows XP is general purpose OS. Th;( are

Special Focus RTOS Special focus RTOS is used with specific processors like ARM or 8051 or DY
example, OSEK for automotives or Symbian OS for the mobile phones.

;ble
X isa
tIT'C.
P,\ for

!

~9.2 " RTOS PCOS-NI

-

i

One popular RTOS for the embedded system development is pCOS-II. For non-commercial use, RTOS
UCOS-I1 is also a freeware. Jean J. Labrosse designed it in 1992 and nowadays pCOS-11 is well developed for
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a number of applications. It is available from Micrium (www.micrium.com). Its name uCOS-II is derived
icro-Controller Operating System. It is also popularly known as MUCOS or MicroCOS or UCOS.
UCOS is pronounced as MU-C-0OS)

ium describes MUCOS as portable, ROMable, scalable, preemptive, real-time and multitasking kernel.

ent of Defense, USA for use in Avionics and in medical applications.
s a precertifiable software component for safety critical systems, including avionics system

rs that are commonly used in the designing of embedded systems. MUCOS is real-time kernel with
additional support as follows.

1. |nC/BuildingBlocks [an embedded system building blocks (software components) for hardware
peripherals, e.g., clock (uC/Clk) and LCD (uC/LCD)).

HC/FL (an embedded flesh memory loader).

WC/FS (an embedded memory file system).

UC/GUI (an embedded GUI platform).

HC/Probe (a real-time monitoring tool).

HC/TCP-IP (an embedded TCP/IP stack).

UC/CAN (an embedded controller area network bus).

RC/MOD (an embedded modbus).

UC/USB device and uC/USB host (embedded USB-devices framework).

D e S il adbadl b

Source Files MUCOS has 10,000 plus lines of codes. There are two types of source files. Master header
file ingludes the ‘#include’ preprocessor commands for all the files of both types. It is referred as ‘includes.h’.
Every [ file has the command, #include INCLUDES.H’.
1. | Processor-dependent source files: Two header files at the master are the following: (i) os_cpu.h is the
processor definitions header file. (ii) The kernel building configuration file is os_cfg.h. Further, two C
files are for ISRs and RTOS timer, specifying os_tick.c and processor C codes os_cpu_c.c. Assembly
codes for the task switching functions are at os_cpu_a.s12 (for 68HC12 microcontroller). For other
microcontrollers, there are similar assembly code files, for example, os_cpu_a.s51 for 8051.
2. | Processor-independent source files: Two files, MUCOS header (included in master) and C files, are
ucos_ii.h and ucos_ii.c. The files for the RTOS core, timer and task files are os_core.c, os_time.c and
os_task.c. The memory-partitioning, semaphore, queue and mailbox codes are in os_mem.c, os_sem.c,
o0s_g.c and os_mbox.c, respectively.

A feature of MUCOS is adaptation of a systematic naming convention that helps program design with
clear understanding of the code. The naming convention is as follows.

a.| OS or OS_ (OS followed by underscore) when used as a prefix denotes that the function or variable is

a MUCOS-operating system function or variable. For example, OSTaskCreate ( ) is a MUCOS function
that creates a task. OS_NO_ERR is a MUCOS macro that returns true in case no error is reported from
an OS function. OS_MAX_TASKS is a constant for the maximum number of tasks in the user
application (The user in the preprocessor definitions defines this constant).
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b. MUCOS is scalable OS. (Only the OS functions that are necessary become part of the appNcation
codes, thus having reduced memory requirements). The functions needed for task servicing, IPC and
so on must be predefined in a configuration file included in the user codes (Refer to Example 9.7 Steps
1 and 2 for a clear understanding of configuration-setting codes).

¢. For multitasking, MUCOS employs a preemptive scheduler (Section 8.10.3).

d. MUCOS has system-level functions. These are for RTOS initiation and start, system clock ticks

(interrupts) initiation and the ISR enter and exit functions. (Section 9.2.1 Table 9.1) For the gritical

section, MUCOS has (i) interrupts disabling and enabling functions that execute at entering and exiting

the section, respectively, (ii) lock and unlock functions in kernel that execute at entering and pxiting
the section, respectively, and that do not disable the interrupts, and (iii) semaphore functions, which
can be used as mutex functions that execute at entering and exiting the critical section, respe¢tively,
and that disables the preemption by a higher priority task, which is sharing that mutex in its critical

section (Refer to Sections 7.7.2 and 8.10.3).

MUCOS has task service functions (e.g., task creating, running, suspending and resuming) (T:

MUCOS has task delay functions (Table 9.3).

g. MUCOS has memory allocation functions for creating and partitioning into blocks, getting a block,
putting into the block and querying during debugging at a block (Table 9.4).

h. MUCOS has IPC functions. These are as per Tables 9.5, 9.6 and 9.7, respectively. MUCOS
the semaphores, queues and mailboxes (Sections 7.11 to 7.13).

i. MUCOS has semaphore functions, which are usable like the event-signalling flags, shared r¢source
acquiring keys or counting semaphores (Section 7.7.5). Table 9.5 lists these.

o

e 9.2).

ad

flags setting in an event flag groups. These functions enable event signalling from OR or AND
for WAIT_ANY or WAIT_ALL operation on number of flags set in the group. An ISR or task
a flag in the group. An ISR is not allowed to wait (pend) for the event(s).

There can be any number of messages as MUCOS sends only the pointer (start address of the
into the mailbox. Table 9.6 lists these.

queue element as MUCOS sends only the address of message into queue. Table 9.7 lists the

The following seven subsections 9.2.1 to 9.2.7 describe the aforementioned MUCOS functions. For fu
each of the seven Tables, 9.1 to 9.7, these sections give the details of values that are returned by the MUCOS
and the details of parameters (arguments) that are passed by value or reference to a MUCOS function.

9.2.1 System-Level Functions

used after the creation of at least one task, which can be called Start_Task or First_Task. (As we
later, a strategy is that remaining tasks are created in the First_Task.)
Recall Section 8.3. We first initiate the system timer clock ticks (and interrupts). MUCOS RTPS has
system functions that should be executed when entering and exiting the ISR.
Recall Table 7.1 and Section 7.8.2. MUCOS RTOS has system functions for disabling and enabling inferrupts
that can be executed when entering a critical section of a task or ISR and exiting the critical section|or ISR
(Sections 7.7.2 and 8.10.3). Table 9.1 gives these RTOS system-level functions.
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Tablp 9.1 Real-time Operating System (RTOS) and System Clock Initiate, Start, Interrupt

Service Routine (ISR) and Disable-Enable Interrupt Functions!

void O

0SSch

Protqtype Functions ) » When is this OS Function Called?
void OBInit (void) At the beginning prior to OSStart ()
void OfStart (void) After the OSInit ( ) and task-create functions
void OB TicklInit (void) In first task function, which executes once only, this function is to initialize the system

void OBIntEnter (void) Recall Section 8.7.1. Just after the start of the ISR codes OSIntExit must call just before

OS_ENTER_CRITICAL Macro to disable interrupts (Section 7.8.2)
OS_EXIT_CRITICAL Macro to enable interrupts (enter and exit functions form a pair in the critical section)

OSSi:hrdUnlock“ ) Unlock scheduling of the tasks (Sections 7.11 and 8.10.3)

timer ticks (system clock interrupts)
the return from the ISR 2 (enter and exit functions form a pair)

BIntExit (void) After the OSIntEnter ( ) is called just after the start of the ISR codes and OSIntExit is
called just before the return from the ISR (enter and exit functions form a pair)®

bdLock? () To lock scheduling of the task (Sections 7.11.1 and 8.10.3)

! FuncﬁoLs in this table pass no arguments and returns void.
2There if a global variable, OSIntNesting. It increments after the enter call. (We should not increment directly though it can
be dong. Let it increment automatically on enter to an ISR).

3 Global

ariable OSIntNesting decrements on exit call. (We should not decrement directly though it can be done. Let it

decrembnt automatically on exit from an ISR).

40SSchd
runs Of
schedu

ii 4

dlock ( ) enables any task critical section run without preemption if it executes before entering critical section and
bSchedUnlock ( ) after end of the task critical section. Task can however be interrupted by an ISR. Task locking the
er should not suspend itself before unlocking.

. Initiating the OS before starting the use of the RTOS functions. Function void OSInit (void) is used to

nitiate the OS. Its use is compulsory before calling any OS kernel functions. It returns no parameter.
An exemplary use as a function is as follows: ;

xf: nple 9.1

art executing the codes */
gin (void) {2. /* Initiate MUCOS RTOS to let us use the OS kernel functions */

it :

Preate (Define Identity, stack size and other TCB parameters for the tasks using RTOS Functions */

:geate semaphore, queue and mailboxes, etc. */

)
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2. Starting the use of RTOS multitasking functions and running the tasks. Function void OSStart
used to start the initiated OS and created tasks. Its use is compulsory for the multitasking O
operations. It returns no parameter. An exemplary use as a function is as follows:

Example 9.2
1. /* Start executing the codes from Main*/

void main (void) {2. /* Initiate MUCOS RTOS to let us use the OS kernel functions */
OSHnit (), H

4
£3

void) is
S kernel

i

]
|
i
i
H
H

3. /* Create tasks and inter-process communication variables by defining their identity, stack size anfl @ther

TCB parameters. */ ¥

4. /* Start MUCOS RTOS to let us use RTOS ccmtrol and run the created tasks and mter—pr ess

communication. */
OSStart ();

o

i

|

/* An infinite while-loop follows in each task. So there is no return to thé main ( ) from tha 1

RTOS. */
}/ * End of the Main function. */

clock ticks and interrupts at regular intervals as per OS_TICKS_PER_SEC predefin
configuring the MUCOS. Its use is compulsory for the multitasking OS kernel operations
timer functions are to be used. It returns or passes no parameter. An exemplary use will be
steps 2 and 10 of Example 9.7.

4. Sending message to RTOS kernel for taking control at the start of an ISR. Function void O
(void) is used at the start of an ISR. It is for sending a message to RTOS kernel for takin,
(Section 8.7.1). Its use is compulsory to let the multitasking OS kernel, control the nesting of
in case of occurrences of multiple interrupts of varying priorities. It returns no parameter. An exj
use as a function is as follows:

Example 9.3
1. /* Start executing the codes of an ISR*/ '
ISR_A (){ i

2. /* sending message to RTOS kernel for taking control of ISR_N from nested ISRs loop. Incien

OSIntNesting, a global variable */
OSintEnter (),

ntEnter
control
the ISRs
emplary

3. /* Codes for servicing of the ISR by calling a task. */

5. Sending a message to RTOS kernel for quitting the control at return from an ISR. Function void

(void) is used just before the return from the running ISR. It is for sending a message to RTOS kemel for
quitting control from the nesting loop. Its use is compulsory to let the OS kernel quit the ISR from the
nested loop of the ISRs. It returns no parameter. An exemplary use as a function is as follows:



nding message to RTOS kernel for quitting the control of ISR_A from the nested loop. Decrement
esting, a global variable */

it();

of the ISR function. */

ending a message to RTOS kernel for taking control at the start of a critical section. Recall
xample 8.21 in Section 8.10.3. A macro-function OS_ENTER_CRITICAL is used at the start of
itical section in a task or ISR. It is for sending a message to MUCOS kernel and disabling the
nterrupts. Its use is compulsory to let the OS kemel take note of and disable the interrupts of the
ystem. It returns no parameter. An exemplary use as a function is as foliows.

oynple 9.5

‘: tart executing the codes of a task or an ISR*/
TR

s for servicing of the task. */

nding a message to RTOS kernel and disabling the interrupts. */
NTER_CRITICAL,;
pn critical section codes as follows. */

5. /{F Codes for Exiting the service*/

7. |Sending a message to RTOS kernel for quitting the control at the return from a critical section. Macro-
function OS_EXIT_CRITICAL is used just before the return from the critical section. It is for sending
a message to RTOS kemel for quitting control from the section. Its use is compulsory to let the OS
kernel quit the section and enable the interrupts to the system. It returns no parameter. An exemplary
use as a function is as follows:

E)&tpple 9.6
1. tb # As in Example 9.5

5./ : nding a message to RTOS kernel for quitting the control of critical section and enabling the

ts. */ q
(IT_CRITICAL,;

d of the ISR function. */
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8. Locking OS scheduler. OSSchedlock ( ) disables preemption by a higher-priority task. This flanction
inhibits preemption by higher-priority task, but does not inhibit interrupt. If an interrupt occ
locking enables return of OS control to that task, which executes this function. The control
the task after any ISR completes.

9. Unlocking OS scheduler. OSSchedUnlock ( ) enables preemption by higher priority task. Enables

interrupt occurring after executing OSSchedUnlock and after the end of the ISR, the higher-priority
task, which is ready will execute on return from the ISR.

9.2.2 Task Service and Time Functions and their Exemplary Uses

time and get time in terms of the number of system clock ticks.
The declarations for the variable and prototype assignments for task functions are done in the pre
commands. Steps 1 and 2 of Example 9.7 show these preprocessor commands. The codes in Steps

codes are saved in a configuration file, which is included in the source code before compilation. Thege steps
configure the MUCOS before they are used.

We shall see in the following examples that there is an infinite loop in every task function. This is a
characteristic way of coding the tasks for preemptive scheduling. From the infinite loop, how will the CPU

then activate the task switch to a higher-priority task? The CPU control returns to MUCOS (or in other
preemptive scheduler) as soon as one of the following situations arises.
1. Any interrupt event including the occurrence of the timer tick interrupt. Refer to Example 9.7, $tep 10

(time set for the interrupt every 10 ms in Step 2).

in Table 9.4 is called, the scheduler switches context, preempts and thus passes the control

higher priority assigned task by activating task switch.

How does the control of CPU return to a preempted task because of an infinite loop existing in pre-
higher-priority task also? It must return by an appropriate coding. For example, refer to the code in S
Example 9.8. Here, the FirstTask is of priority 8 (the highest available to a user task). It suspends it
the loop at Step 12. ,
1. Creating a task. Function unsigned byte OSTaskCreate (void (*task) (void *taskPointer), void *pmdata,
OS_STK *taskStackPointer, unsigned byte taskPriority) is explained as follows.

in MUCOS because each task has to be assigned a distinct priority.

If the maximum number of user tasks is eight, then OS_MAX_TASKS is 24 (including eight system-level
must be set at 23 for eight user tasks of priority between 8 and 15, because MUCOS will assign
16 to 23 to the 8 lowest priority system level tasks. The priorities 0 to 7 or 16 to 23 will then be for
internal uses.
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Tallle 9.2 Service and System Time Functions for the Tasks

Prototype of Functions What are the.  What are the When is this Operating
Parameters . Parameters  System (OS) Function
_ Returned? Passed? Called?
unsigged byte OSTaskCreate (void (*task) " RA ] PA Must call before
(void PFtaskPointer), void *pmdata, OS_STK . L running a task
*task$tackPointer, unsigned byte taskPriority)
unsigged byte OSTaskSuspend RB PB Called for blocking a
(unsi byte taskPriority) task
unsighed byte OSTaskResume RC PC Called for resuming a
(unsigned byte taskPriority) blocked task
void OSTimeSet (unsigned int count) None PD Each count represents
: the system clock ticks.
. When system time is to
be set it is set by an
initial count value
unsighed int OSTimeGet (void) ‘RE None Find the present count so
that the system time
is read

Unsiémed int means a 32-bit unsigned integer. Abbreviations used in columns 2 and 3 are explained in text.

OS|{LOWEST_PRIO and OS_MAX_TASKS are user-defined constants in preprocessor codes that are
needed for configuring the MUCOS for the user application. Defining unnecessarily 20 user tasks when
actually 4 tasks are created by the user is to be avoided because more OS_MAX_TASKS means unnecessarily
higheg(memory space allocation by the system to the user tasks.

Ta

parameters passing PA:

(a)] *taskPointer is a pointer to the codes of task being created.
(b)| *pmdata is pointer for an optional message data reference passed to the task. If none, we assign it as

NULL.

(c)l * TaskStackPointer is a pointer to the stack of task being created.
(d)| TaskPriority is the task priority and must be within 8 to 15, if macro OS_LOWEST_PRIO sets the

lowest priority equal to 23.

Refurning RA: The lowest priority of any task OS_ LOWEST_PRIO is 23. For the application program, task
priority assigned must be within 8 to 15. The function OSTaskCreate () returns the following: (i) OS_NO_ERR,
when| creation succeeds; (ii) OS_PRIO_EXIST, if priority value that passed already exists;
(iii) ®S_PRIO_INVALID, if priority value that passed is more than the OS_PRIO_LOWEST;

(iv)

_NO_MORE_TCB returns, when no more memory block for the task control is available.

A fask can create other tasks, but an ISR is not allowed to create a task. An exemplary use is in creating a

task,

Task1_Connect, for a connecting task. OSTaskCreate (Task1_Connect, void (*) 0, (void *)

*Taskil_ConnectStack [100], 10)
Tagk parameters passed as arguments are as follows.
(a) Taskl_Connect, a pointer to the codes of Task1_Connect for task being created.
(b} The pointer for an optional message data reference passed to task is NULL.
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(c) * Taskl_ConnectStack is a pointer to the stack of Taskl_Connect and it is given size = 100 a
in the memory.
(d) TaskPriority is task priority allotted at 10, the highest but two that can be allocated.

It will generate error parameters, OS_NO_ERR = true in case creation of Task1_Connect task su‘I:ueeds.

OS_PRIO_EXIST = true, if priority 8 task is already created and exists. OS_PRIO_INVALID =
passed priority parameter is higher than OS_LOWEST_PRIO - 8. 0S_NO_MORE_TCB = false, whe;
is available for Task1_Connect (TCB definition is given in Section 7.3).

Example 9.7

1. /* Preprocessor MUCOS configuring commands to define OS tasks service and timing funcu&é as

enabled and their constants*/ %
#tdefine OS_MAX_TASKS 24 /* Let maximum number of tasks in user application be 8. */
#define OS_LOWEST_PRIO 23 /* Let lowest priority task in the OS be assigned pri
= 23 for 8 user application tasks of priorities between 8 and 15. */

#define OS_TASK_CREATE_EN 1/* Enable inclusion of OSTaskCreate ( ) function */
#define OS_TASK_DEL_EN 1/* Enable inclusion of OSTaskDel ( ) function */

#define OS_TASK_SUSPEND_EN 1/* Enable inclusion of OSTaskSuspend ( ) function */
#define OS_TASK_RESUME_EN 1/* Enable inclusion of OSTaskResume ( ) function */

/* End preprocessor MUCOS configuring commands */

2. 1* Specify all user prototype of task-functions to be scheduled by MUCOS */ “

/ * Remember: Static means permanent memory allocation */
static void FirstTask (void *taskPointer);
static void Task1_Connect (void *taskPointer);

static OS_STK FirstTaskStack [FirstTask_StackSize]; €

static OS_STK Task1_ConnectStack [Task1_Connect_StackSize]; !

/* Define public variable of the task service and timing functions */ H o

Dliity

e, if
h TCB

#define OS_TASK_IDLE_STK_SIZE 100 /* Let memory allocation for an idle state task stack siyei be

100%/

#define OS_TICKS_PER_SEC 100 / * Let the number of ticks be 100 per second. The system clock will

interrupt and thus tick every 10 ms to update the set counts and to transfer control to the MUCOS. A
fidefine FirstTask_Priority 8 /* Define first task in main priority */
#define FirstTask_StackSize 100 /* Define first task in main stack size */

#idefine Tuskl_Connect_Priority 10 /* Define Task1_Connect priority */ £

#define Taskl_Connect_StackSize 100 /* Define Task1_Connect stack size */

3. /* The codes of the application starts from main*/ ﬁ

voidmain (void) { i

4. /* Initiate MUCOS to let us use the OS kernel functions */
OSInit ();

5. /* Create first task that must execute once before any other. Task creates by deflmqg_ its

identity as FirstTask, stack size and other TCB parameters. ¥/

i
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?‘Create (FirstTask, vovid (*) 0, (void *) &FirstTaskStack [FirstTask_StackSize],
k_Priority);
his example, FirstTask will be creating other tasks. May create other main tasks and

MUCOS RTOS to let us use RTOS control and run the created tasks */

“(); /* Infinite while-loop is there in each task. So there is no return to main from the RTOS
OSStart (). ¥/

d of the Main function ***/

codes of the application first task that creates in Main*/

eate a Task as per Step 2 defined by task identity Task1_Connect; stack size and other TCB parameters.
i A
OSTMTCmate (Task1_Connect, void (*) 0, (void *) &Taskl_ConnectStack [Taskl_Connect_StackSize],
Taskil _{Connect_Priority)

‘Create other tasks and inter-process communication variables. */

i, £ End infinite loop */

/Bad of FirstTask Codes. */

F¥8tTask is the main and only task created in step 5. The first task calls a function for the timer
itipn (step 10). This is required as the RTOS timer functions are needed in the application. A task

hskCreate function within the first task function.

¥ The codes for the Task1_Connect*/

i¢ Yoid Task1_Connect (*taskPointer) {

15. [* Initial assignments of the variables and pre-infinite loop statements that execute once

i6. ¥ ban an infinite while-loop. */
whilg 1) {

17. * Codes for Task1_Connect*/
i ;

18.; AEnd of while loop*/
19.}1 % End of the Task1_Connect function */




2. Suspending (blocking) a task. Function unsigned byte OSTaskSuspend (unsigned byte taskPriority)
Task parameters passing PB: taskPriority is the task priority and must be within 8 to 15 for 8 userttasks.
Returning RB: The function OSTaskSuspend () returns the error parameters OS_NO_ERR when the Blocking

succeeds. OS_PRIO_INVALID, if priority value that passed is more than 15, the OS_PRIO_LOWEST ¢onstant
value. OS_TASK_SUSPEND_PRIO, if priority value that passed already does not jexists.
OS_TASK_SUSPEND_IDLE, if attempting to suspend an idle task that is illegal.

An exemplary use is in blocking the task Task1_Connect of priority = TaskI_Connect_Priority is as follows:
OSTaskSuspend (Taskl_Connect_Priority). Task parameter passed as argument is 6. [Recall
Taskl_Connect_Priority was assigned 10 earlier in the step 2 of Example 9.7. The following error parpmeters
will be returned by this function.

(a) OS_NO_ERR = true, when the blocking succeeds.

(b) OS_PRIO_INVALID = false, as 8 is a valid priority and is not more than OS_PRIO_LO B T.

(c) OS_PRIO_LOWEST = 23. ‘

(d) OS_TASK_SUSPEND_PRIO = false, as priority value that passed already does exist.

(e) OS_TASK_SUSPEND_IDLE = false, when attempting to suspend a task that was not an idle task

MUCOS executes idle task OSTaskIdle ( ) when all tasks are either waiting for timer expiry ar for an
IPC, e.g., semaphore IPC.

Example 9.8

13.) /* End of FlrstTask Codes */
14 0:19.-/* Steps Codes as in Example 9.7.%/

3. Resuming (enabling unblocking) a task. Function unsigned byte OSTaskResume (unsigngd byte
taskPriority) resumes a suspended task.

Task parameters passing PC: taskPriority is the task priority of that task which is to resume and must be
within 8 to 15 when OS_LOWEST_PRIO is 23 and number of user-tasks = 8.

Returning RC: The function OSTaskResume ( ) returns the OS_NO_ERR when the blocking sycceeds.
OS_PRIO_INVALID, if priority value that passed is more than 23, the OS_ LOWEST_PRIO constart value.
OS_TASK_RESUME_PRIO, if priority value that passed already resumed. OS_TASK_NOT_SUSP ED,
if attempting to resume a not suspended (blocked) task.

An exemplary use is in un-blocking Task1_Connect of priority = Taskl_Connect_Priority is as follows:
OSTaskResume (TaskI_Connect_Priority). Task parameter passed as argument is 10, as Task1_Connect_Priority
= 10. The following error parameters will be returned by the task-resuming function. v

(a) OS_NO_ERR = true, when the un-blocking succeeds and task of priority 8 reaches the jfunning

state.

(b) OS_PRIO_INVALID = false, as 8 is a valid priority and is not more than OS_ LOWEST_PRIO.

(c) OS_LOWEST _PRIO =23. :




.J4€odes of other task, Task N */

i 1* Steps as per Example 9.7 codes for Tagkl C.m

and only once then never be used within a task function, as some other functions that rely on the
ill malfunction. Let the OS timer clock count continue to be used as in a free running counter. There is

ged later on of using the set time function. This is because at any instant, the time can be read using a get

(Example 9.11) and at any other instant, it can be defined again by adding a value to this time.

Exdinple 9.10
voifl PirstTask (*taskPointer) {
1. tb P, /* The codes up to OSTicklnit ( ) in Example 9.7*/
10.}/4Bet the timer number of ticks to 0 */
unsighied int presetTime = 0;
OS MeSet (presetTime);
OS} it ( );
11.5/  Other codes of FirstTask */
b
e
} ! *ﬂd of the FirstTask function.
5. | Getting time of system clock. Function unsigned int OSTimeGet (void) returns current number of ticks

as an unsigned integer. The passing parameter as argument is none.

| Returns 32-bit integer, current number of ticks at the system clock.




Example 9.11

]
1: to 20. /* The codes as per steps 1 to 19 in Example 9.7 and the codes as for another task functior{ %

unsigned int currentTime = OSTimeGet ( );
2. /* Other codes of the task after determining current time */

} * End of Task-function. */

9.2.3 Time Delay Functions
MUCOS time delay functions for tasks are as per Table 9.3.

Table 9.3 Time Delay Functions for Tasks

What are the
Parameters
Returned?

What are the
Parameters
Passed?

Prototype Function

-

When is this Operatifg|

System (OS) Called?"

void OSTimeDly (unsigned short None PF

delayCount)

unsigned byte_OSTimeDlyResume RG PG

(unsigned byte_taskPriority)

void OSTimeDlyHMSM (unsigned byte PH
hr, unsigned byte mn, unsigned byte

sec, unsigned short ms)

When a task is to be delaj
by count inputs equal toy
delayCount — 1. The task;

which delays is the one i
which this function ex 1

When a task of priority
taskPriority is to resume
before the preset delay, ¥
was by an amount define
delayCount or (hr, mn an
ms) and presently is in
blocked state ;

When need is to delay a
block a task for hr hours,

minutes, sec seconds and{m

milliseconds?

i
ot
H
!

Abbreviations used in columns 2 and 3 are explained in text.

! Task cannot be delayed than 65,535 system clock count inputs (ticks) by function OSTimeDly.
2Task cannot resume later by OSTimeDlyResume ( ) if delay (in hours, minutes, seconds and milliseconds) is set

65,535 system clock count inputs (ticks).

re than

1. Delaying by defining a time delay by number of clock ticks. Function void OSTimeDly (unsigned
short delayCount) delays task by (delayCount — 1) ticks of system clock. It returns no parame

Task parameters passing PF: A 16-bit integer, delayCount, to delay a task at least till the
clock count inputs (ticks) equals to (delayCount — 1) + count, where count is the present number of

system-clock.

ter.
system
licks at
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mple 9.12
k /* Steps as per Example 8.7 codes for Task1_Connect Function. */

19.§/‘ Time delay for 1 second = period of 100 system ticks if system tick is set at every 10 ms.*/

os

&

eDly (100);
20. /EResume Task1_Connect by a function defined in next subsection and execute other codes within-
the.l

p. */

21. J|* End of while loop*/
22, Jf'* End of the Task1_Connect function. */

2.

Re

Resuming a delayed task by OSTimeDly. Function unsigned byte OSTimeDlyResume (unsigned
byte_taskPriority) resumes a previously delayed task, whether the delay parameter was in terms of the
delayCount ticks or hours, minutes and seconds. Note: In case, defined delay is more than 65,535
system clock ticks, OSTimeDlyResume will not resume that delayed task.

turning RG: Returns the following error parameters.

(a){ OS_NO_ERR = true, when resumption after delay succeeds.

(b)| OS_TASK_NOT_EXIST = true, if task was not created earlier.

(¢)] OS_TIME_NOT_DLY = true, if task was not delayed.

(d)| OS_PRIO_INVALID, when taskPriority parameter that was passed is more than the OS_PRIO_

LOWEST (=23).

Task parameters passing PG: taskPriority is the priority of that task that is delayed before resumption.
Anlexemplary use is OSTimeDlyResume (Task_ReadPortPriority). It resumes a delayed task that the OS
identifies by priority Task_ReadPortPriority.

ple 9.13

1. iq 19 /* Steps as per Example 9.12 codes for Task1_Connect Function. */

‘;Time delay for 1 second = period of 100 svstem ticks if system tick is set at every 10 ms.*/
pmeDly (100);
' Other codes */

¥

22} I,FResume Task1_Connect Control and execute other codes within the loop. */

eé’eDlyResume (Task_Connect_Priority);

23. J; /* End of while loop*/

7 * End of the Task1_Connect function. */




delays up to 65,535 ticks a task with delay time defined by hr hours between 0 and 55, mn minutes
between 0 and 59, sec seconds between 0 and 59 and mils milliseconds between 0 and 999. ms
adjusts to the integral multiple of number of system-clock ticks. The task in which this fungtion is
defined is delayed. '

Returning RH: The function OSTimeDIyHMSM () returns an error code as following.

(a) OS_NO_ERR, when four arguments are valid and resumption after delay succeeds.

(b) OS_TIME_INVALID_HOURS, OS_TIME_INVALID_MINUTES, OS_TIME_INVALID_S INDS
and OS_TIME_INVALID_MILLI, if the arguments are greater than 55, 59, 59 and 999, respegtively.

(c) OS_TIME_ZERO_DLY, if all the arguments passed are 0.
Task parameters passed PH: (a) to (c) hr, mn, sec and ms are the delay times in hours, minutes, seconds and
milliseconds by which task delays before resuming.
An exemplary use is using OSTimeDlyHMSM (0, 0, 0, 999) function in the codes of a task in s'tﬁp 8 in
Example 9.12. It delayed that task by 9990 ms. The function delays that task for at least 10 ms if systerh ¢lock
ticks after every 10 ms. (If delay is defined as 9,000,000 ms, the OSTimeDlyResume shall not be able to
resume this task when asked. Number of ticks must be less than 65,535, which means maximum delay|can be
655,350 ms if system clock ticks every 10 ms].

9.2.4 Memory Allocation-Related Functions

Memory functions are required to allocate fixed-size memory blocks from a memory partition having gnfeger
number of blocks. The allocation takes place without fragmentation. The allocation and de-allocation take place
in fixed and deterministic time (Example 8.6). MUCOS memory functions for the tasks are as per Tabl¢ 9.4.

Table 9.4 Real-Time Operating System (RTOS) Memory Functions for Querying,
Creating, Getting and Putting
Prototype Functions What are the Para- When is this OS Call?
meters Returning
and Passed?
OSMem *OSMemCreate (void *memAddr, RI and PI To create and initialize a memory ;
MEMTYPE! numBlocks, MEMTYPE blockSize, partition. The memory blocks are then
unsigned byte *memErr) allotted from the partition
void *OSMemGet (OS_MEM *memCBPointer, RJ and PJ To find pointer of the memory cogtrol
unsigned byte *memErr) block allocated to the memory bldcks,
NULL if no blocks, OSMemGet i§ used
when an interrupt service routine (ISR) or
task needs to get the memory blodk(s)
unsigned byte OSMemQuery (OS_MEM RK and PK To find pointers of the memory cgntrol
*memCBPointer, OS_MEM_DATA *memData) block and OS_MemData data structure
unsigned byte OSMemPut (OS_MEM RL and PL To return a pointer of memory block in
*memCBPointer, void *memBlock) the memory partitions from the mgmory
control block pointer. OSMemPut {s used
when the application no longer needs the
memory block

I MEMTYPE is unsigned int of 16 or 32 bits.
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1.' Qreating memory blocks at a memory address. Function OSMem *OSMemCreate (void *memAddr,
MEMTYPE numBlocks, MEMTYPE blockSize, unsigned byte *memErr) is an OS function, which partitions
the mefnory from an address with partitions in the blocks. The creation and initializing of the memory partitions
into the blocks helps the OS in resources allocations.

Rethrning RI: The function *OSMemCreate () returns a pointer to a control block for the created memory
partitigns. If none created, the create function returns NULL pointer.

Task parameters passing PI: MEMTYPE is the data type according to the memory, whether 16-bit or 32-bit
CPU njemory addresses are there. For example, 16-bit in 68HC11 and 8051. (i) *memAddr is pointer for the
memony-starting address of the blocks. (ii) numBlocks is the number of blocks into which the memory must be
partitianed (must be 2 or more). (iii) The blockSize is the memory size in bytes in each block. (iv) *memEir is a
pointer of the address to hold the error codes. At the address *memErr the following global error code variables
changg| from false to true. OS_NO_ERR = true when creation succeeds. OS_MEM_INVALID_ BLKS = true,
when 3t least two blocks are not passed as arguments. (v) OS_MEM_INVALID_ PART— true, when memory

finition i m Pre-Processor for a 16~b1t unsigned number, N
prcan be between 0 and 65535 and to define the number of bytes that store at a block Maxmmm
nier of bytes at a block can be 65535. */

memAddr = 0x8000;

5. I* iOther Codes for the function. */

} /%f End of the function */

2.| Getting a memory block at a memory address. Function void *OSMemGet (OS_MEM *memCBPointer,
| unsigned byte *memEir) is to retrieve a memory block from the partitions created earlier.

Refurning RJ: The function OSMemGet ( ) returns a pointer to the memory control block for the partitions.
Itr s NULL if no blocks exist there.

Tagk parameters passing PJ: (i) Passes a pointer as argument for the control block of a memory partition.
(i) The function OSMemGet ( ) passes the error code pointer *memErr so that later it returns one of the
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following. OS_NO_ERR, when memory block returns to the memory partition, or OS_MEM_FULL,, when
memory block cannot be put into the memory partition as it is full.
Example 9.15 shows how to get a pointer to the memory block, which has been created earlier.

Example 9.15

1. to 5. /* Codes as per Example 9.14 */
6. /* Codes for retrieving the pointer to memory block in a partition created by step 5 in Example 9’1
memPointer = 0xA000;

memErr = OS_MEM_NO_FREE_BLKS;
*OSMemGet (*memPointer, *memErr);

¥
~

5. /* Other Codes for the function. */

} * End of the function */

3. Querying a memory block. Function unsigned byte OSMemQuery (OS_MEM *memCBHointer,
OS_MEMDATA *memData) is to query and return the error code and pointers for the memory pattitions.
OS_NO_ERROR as 1 if a memory address *memPointer exists at *OS_MEMDATA, else retprns 0.

Returning RK: The function OSMemQuery ( ) returns an error code, which is an unsigned byte. THe code
is OS_NO_ERR = 1 when querying succeeds, else 0.
Task parameters passing PK: (i) The function OSMemQuery ( ) passes (i) a pointer memPointer] of the
memory created earlier, and (ii) a pointer of data structure, OS_MEM_DATA. As pointers are pagsed as
references, the information about memory partition returns with the memory control block pointer.

4. Putting a memory block into a partition. Function unsigned byte OSMemPut (OS]MEM
*memCBPointer, void *memBlock) returns a memory block pointed by *memBlock, which memory
control block points by *memCBPointer.

Returning RL: The function OSMemPut ( ) returns error codes for one of the following:|either
(i) OS_NO_ERR, when the memory block returned to the memory partition or (ii) OS_MEM_FULL] when
the memory block cannot be put into the memory partition as it is full. i

Task parameters passing PL: (i) The function OSMemPut ( ) passes a pointer *memCBPointer!of the
memory control block for the memory partitions. It is there that the block is to be put. (ii) A pointer of the
memory block *memBlock is to be put into the partition. :

9.2.5 Semaphore-Related Functions

MUCOS semaphore functions for the tasks are as per Table 9.5. MUCOS also provides for event functipns for
an event flags group to handle task-pending action on occurrence of any or all events. These are not dlsﬁussed
in this section. '
When a semaphore created by this OS is used as a resource-acquiring key (as mutex), the semaphore value to
start with is 1, which means that resource is available and 0 will mean not available (Section 7.7.2).§kn a
semaphore created by this OS is used as an event-signalling flag or as counting semaphore, the se phore
value to start with = 0 or N when using the semaphore as event-signalling flag or counting, respegtively
(Sections 7.7.1 and 7.7.4).
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1. {Creating a semaphore for the IPCs. Function OS_Event OSSemCreate (unsigned short semVal) is for
creating an OS’s ECB (Event Control Block) for an IPC with semVal returning a pointer, which
points to the ECB. A semaphore creates and initializes with the value = semVal.

Retyrning RM: The function OSSemCreate ( ) returns a pointer *eventPointer for the ECB allocated to the
. semaphore. Null if none available.

"Task parameters passing PM: A semVal between 0 and 65535 is passed. For IPC as an event-signalling
flag, SemFlag must pass 0 and as a resource-acquiring key, SemKey must pass 1. For IPC as a counting
semaphore, SemCount must be either 0 or a count-value to be passed in the beginning.

Refer to Examples 9.16, 9.17 and 9.18 for understanding the use of OSSemCreate.

2. {Waiting for an IPC for semaphore release. Function void OSSemPend (OS_Event *eventPointer,
unsigned short timeQut, unsigned byte *SemErrPointer) is for letting a task wait till the release event
of a semaphore: SemFlag or SemKey or SemCount. The latter is at the ECB pointed by *eventPointer.
SemFlag or SemKey or SemCount becoming greater than 0 is an event that ‘signals the release of the
tasks in the waiting states. The tasks now become ready for running (They run if no other higher-
priority task is ready). The tasks also become ready after a predefined timeout, timeOut. SemFlag or
SemKey or SemCount decrements and if it becomes 0 then it makes the semaphore pending again and
the other tasks using OSSemPend ( ) (have to wait for its release.
ing RN: The function OSSemPend ( ) when a semaphore is pending, then suspends till >0 (release)

(iii) O _ERR_PEND_ISR returns true, if this function call was by an ISR and which is an error, since an ISR
should hot be blocked for taking the semaphore. (iv) OS_ERR_EVENT_TYPE returns true, when *eventPointer

Task parameters passing PN: (i) The OS_Event *eventPointer passes as a pointer to ECB that associates with the
semaphore: SemFlag or SemKey or SemCount. (ii) Passes argument for the number of timer ticks for the timeOut.
Task ugblocks after the delay is equal to (timeQOut — 1) ticks even when the semaphore is not released. It prevents
infinite] wait. It must pass 0 if this provision is not used. (iii) Passes *err, a pointer for holding the error code.
Exlnples 9.16, 9.17 and 9.18 explains use of 0SSemPend ( ).

Table 9.5 Real-Time Operating System (RTOS) Semaphore Functions for Inter Tasks

Communications

—— - —
' Prototype of Functions’ What are the When is this OS Function Called?

Parameters
Returning and
Passed?!

(0N _‘Eyem OSSemCreate RM and PM To create and initialize ECB and a semaphore

(ungigped short semVal) ) Lo to SemVal. :

void (SSemPend ‘ A

(OS_Bvent *eventPointer, unsigned short . RN and PN Only a task and not an interrupt service routine

timeOut, unsigned byte *SemErrPointer) - .(ISR) can accept the semaphore. The function is to

check whether semaphore is pending or not pending
(0 or >0). If pending (=0), then suspend the task till
>0 (released). If >0, decrement the value of
semaphore and run the waiting codes. Decrement
makes the semaphore pending again for some other

(Contd)
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Prototype of Functions' What are the When is this OS Function Called?
Parameters
Returning and
Passed?’

specific number of timer ticks (system clock
interrupts) = timeOut — 1. Block the task on
and unblock on releasing the semaphore on

no need to wait by the task, only decrease it ta
the value is not already zero.

unsigned byte OSSemPost RP and PP An ISR or task can post the semaphore. SemV,
(OS_EVENT*eventPointer) . or more, increments. Increment makes the

If tasks are in the blocked state and waiting fof
SemVal semaphore to acquire value >0 then
those also ready to run as and when scheduled
kernel. The kernel finds the priority of the runy
and ready tasks and runs the one that has the }
priority first.

unsigned byte OSSemQuery RQ and PQ To get semaphore information.
(OS_EVENT *eventPointer,
OS_SEM_DATA *SemData)

task. Pending period ends on timeOut also afjl the

. OSSemPost.
unsigned short OSSemAccept RO and PO An ISR or task can accept the semaphore. The|
(OS_EVENT *eventPointer) e function checks whether semaphore value > 0 and if
yes, then retrieve and decrement. Used when there is

semaphore again not pending for the waiting thsks.

nding

0if

pl if 0

r the
ake
by the
ning

ighest

1Column 2 refers to the corresponding explanatory paragraph in the text.

3. Check for availability of an IPC after a semaphore release. Function unsigned short OSSent
(OS_Event *eventPointer) checks for a semaphore value at ECB and whether it is greater tha
unassigned 16-bit value is retrieved and then decremented.

Returning RO: The function OSSemAccept ( ) decrements the semVal if >0 and returns the predecre
value as an unsigned 16-bit number. It returns 0 if semVal was 0 and semaphore was not pending when

IAccept
h 0. An

mented
posted

(released). After this, the task codes run further.
Task parameters passing PO: The OS_Event *eventPointer passes a pointer for the ECB that as

with semaphore, semVal.
4. Sending an IPC after a semaphore release. Function unsigned byte OSSemPost (OS_Event *eve

is for letting another waiting task not wait now afterwards and an IPC is sent for the release eve tof the

event that signals the release of a task waiting state. The task now become ready for running (
other higher-priority task is ready). SemFlag or SemKey or SemCount decrements on running that
if it becomes < O then it makes semaphore pending again and the other tasks have to wait for itsrelease.

If the IPC is posted from an ISR, then the pending task can run only after OSIntrExit () executes ani
from the ISR. If the presently running task is of higher priority than the task pending for the want of
then the present task will continue to run unless blocked or delayed by executing some function.

return
e IPC,




| 50y

Redi§ine Operating System Programming-1: MicroC/OS-1i and VxWorks 429

Retyming RP: The function OSSemPost ( ) increments the semVal if it is 0 or > 0, and later following macros
return ffue from the error code macros as follows: (i) OS_NO_ERR returns true, if ssmaphore signaling succeeded
(SemVal > 0 or 0). (ii)) OS_ERR_EVENT_TYPE returns true, if *eventPointer is not pointing to the semaphore.
(iii) OY_SEM_OVF returns true, when semVal overflows (cannot increment and is already 65,535).

Task parameters Passing PP: The OS_Event *eventPointer passes as pointer to ECB that associates with
the serpaphore.

5. |Retrieve the error information for a semaphore. Function unsigned byte OSSemQuery (OS_EVENT
*eventPointer, OS_SEM_DATA *SemData) puts the data values for the semaphore at the pointer, SemData.

Retyrning RQ: After the OSSemQuery ( ) runs the SemData function and gets the OSCnt, which is the
semaplore present value (count). The Semdata also gets the list of the tasks, which are waiting for the semaphore.
The list is at pointers OSEventTbl [ ] and OSEventGrp. The semaphore error information parameters we can find
on runfiing the macros, OS_NO_ERR and OS_ERR_EVENT_ TYPE. (i) OS_NO_ERR returns true, when
querying succeeds or (i) OS_ERR_EVENT_TYPE returns true, if *eventPointer is not pointing to the semaphore.

Task parameters passing PQ: The function OSSemQuery ( ) passes a pointer of the semaphore created
earlier|at *eventPointer and a pointer of the data structure at *SemData for that created semaphore.

hple 9.16
of OSSemPost and OSSemPend as an event-signalling flag is as follows. Let the mmal value of an

event ;,, gna]hng SemFlag be 0 on creating a semaphore by OSSemCreate. A task must first execute OSSemPost,

whichs the SemFlag to 1 and thus notifies the event. When SemFlag becomes 1 released (not taken),
el jting task (task that executed OSSemPend function) on posting of the semaphore as 1 can start running

(it ; when no other higher-priority task is ready to run). The semaphore SemFlag decreases to 0 (again

o or taken) on retur from the OSSemPend function. The waiting codes of the task now run.
gsider an example of reading bytes on a network. Assume that an ISR executes on a character
at a port. Another task is read port A. Third task is to decipher the port message. This example
ow the steps a, b and c synchronize the ISR and two tasks using semaphore as event-signalling flag
tmg and sending an IPC.
\For step a, let the task be ISR_Charlntr. It executes on interrupt and writes the character into PortA
buffer. It signals for availability character at port A buffer using semaphore semFlag.
For step b, let the task signalled to run by the ISR be Task_Read_Port_A. It is for reading the
eharacter when available at port A.
§“»1 or step c, let the task be Task_Decrypt_Port_A. It is for decrypung the message.

ydes to create the ISR and two tasks and synchronize these will be as follows.
odes as per Example 9.7 Step 1 except last comment line*/

n

]

Wm

Preprocessor definitions for maximum number of inter process events to let the MUCOS allgcate
¥y for the Event Control Blocks */ -

: OS_MAX_EVENTS 8/* Let maximum IPC events be 8 */

e OS_SEM_EN 1/* Enables inclusion of semaphore functions in applications using MUCOS */

f; of preprocessor commands */

. f*fipdes as Ex le 9.7 Step 2 */
.. per txamp P




4. /* Prototype definitions for ISR and two tasks, stacks and priorities. */
static void ISR_Charlntr (void *IntrVectorPointer);
static void Task_Read_Port_A (void *taskPointer);
static void Task_Decrypt__Port__A (void *taskPointer);
static OS_STK Task_Read_Port_AStack [Task_Read_Port_AStackSize];
static OS_STK Task_Decrypt_Port_AStack [Task_Decrypt_Port_AStackSize];
#define Task_Read_Port_AStackSize 100 /* Define task 2 stack */
#define Task_Decrypt_Port_AStackSize 100 /* Define task 3 stack */

- #define Task_Read_Port_APriority 12 /* Define task 2 priority */
itdefine Task_Decrypt. Port_APriority 13 /* Define task 3 priority */
5. /* Prototype definitions for the semaphores */

il

g
OS_EVENT.: SemFlagl; /*Needed when using Semaphore as flag for inter-process communication bty

port chegk and port read tasks. Port read has to wait for check O.K.*/ i
OS_EVENT: SemFlag2; /*Needed when using Semaphore as flag for inter-process communication big
. port read and port read decipher task. Port decrypting has to wait for port read */ ‘
OS_EVENT: SemKey1; /*Needed when using Semaphore as resource key as in Example 9. 17*/ ;j_
OS_EVENT: SemCount; /*Needed when using Semaphore as Counting as in Example 9.18*/ 7
6. /* Codes as per Example 9.7 Step3t6 5*

s.»,

SemFlagl = OSSemCreate (0); /*Declare initial value of semaphore = 0 for using it as an event s i.q
ﬂag*/ :

OSStart ( ) */
'} * End of while loop*/

}/ *** End of the Main function ***/

/* Codes as per Example 9.7 Step 7 and 8 */
8. /* Create two tasks as per Step 2 by defining two task identities, Task_Read_ Port__A
Task_Decrypt_Port_A and the stack sizes and other TCB parameters. */ ¥
OSTaskCreate (Task_Read_Port_A, void (*) 0, (void *) & Task_Read_Port_i .,\
[Task_Read_Port_AStackSize], Task_Read_Port_APriority);
OSTaskCreate (Task_Decrypt_Port_A, void (*) 0, (void *) & Task_Decrypt_Port_4
[Task_Decrypt_Port_AStackSize], Task_Decrypt_Port_APriority);
9. while (1) { /* Infinite loop of FirstTask */

10. /* Suspend, with no resumption later, the First task as it must run once only for initiation of ti
and for creating the tasks that the scheduler controls by preemption. */

tasks waiting execution*/
12. } /* End of while loop */

i
kS

iR
i
4
B i
3
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| /HEnd of FirstTask Codes */

g ﬂ*****************************************************************’

¥ Ifhe codes for the ISR_Charlntr */

» $9id ISR_Charlntr (void *BufferPointer) {

tEnter (); /*

iHlal assignments of the variables and pre-infinite loop statements that execute once

ey e S Wty

16 /¥ & ipde for resetting interrupt pendmg flag, in case, it does not automatically reset in the given interrupt
servicqstart */
17. ﬂ* % odes for ISR_Charlntr to put the received character into Port A buffer at *BufferPointer */

18. ﬁ ode for readying for next interrupt at the port */

19. elease semaphore to a task waiting for the read at Port A */
OSSk b Post (SemFlagl);

20. ¢ ?& ntExit ();

21y # .End of the ISR_Charlntr function */

22. K r prxx4xThe codes for the Task_Read_Port A ******#/
T;'s d Task_Read_Port_A (Void *BufferPointer) {

al ass1gnments of the variables and pre- mflmte Ioop statements that execute

. ¥ BRart an infinite while-loop. */
whilp §8) {
24.4 alt for SemFlagl =1 by OSSemPost function of character avaﬂablhty in buffer after interrupt at
1901’t ¥ ‘

end (SemFlagl, 0, SemErrPomer),
. des for reading from Port A and storing message at a new buffer*/

* Belease semaphore to a task waiting for the decrypting*/
pqPost (SemFlag2);

OSTh #Dly (100);/* Block the task for 100 clock ticks to enable the lower priority decryption task

» /* End of while loop*/

;Endofthe'lksk Read_Pert_A function */
****#*******#******************************************#********{

b+ Meart of Task_Decrypt_Port_A codes */ :

f f id Task_Decrypt_Port_A (void *taskPointer) {

mal assignments of the variables and pre-infinite loop statements that execute once only*/
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31. /* Start an infinite while-loop. */
while (1) { ‘ i
OSSemPend (SemFlag2, 0, *SemErrPointer), / *Wait for unlimited time for SemFlag2 =1 by OS Sein

ost
function for a character read at Port A */ o
32¢. /* Codes for Task_Decrypt_Port_A that read the new buffer and put the decrypted data back ifih hew

buffer */

JW;;{» g3

OS'I“:meDlyesnme (Task_Read_Port_Priority); /* Resume the Task_Read_Port delayed earlier */
33. J; /* End of while loop*/
34. }/ * End of the Task_Decrypt_Port_A function */

/**********#*********************************#*********#*******#**#**/

S 3
2
4

Example 9.17

Use of OSSemPost and OSSemPend as. resource-acquiring keys is as follows The resource n
shared memory buffer or commands that use global variables or touch screen or flash memory
device control registers and buffers. Let a resource key available SemKey s initial value be 1. A ta
first execute OSSemPend, which decreases the SemKey value to 0 and the codes of the critical sec
task run. The section is one in which that resource is used. The same task must execute OSSemPos
codes finish at C and thus signal the resource key availability to other tasks. The SemKey beco:
released (not taken) on return from OSSemPost function. If no other higher-priority task is read
another task that shares the resource with the earlier task and executes OSSemPend function on
shared data section C’. The C’ executes OSSemPost function on exit. Making SemKey 0 and then
sections C and C’ lets one task only acquire the resource in a specific running state of a task.

Recall Example 9.16, steps b and ¢ for reading and then decrypting the bytes from a network. I
no message, how can it be deciphered? Let us revisit Example 9.16. The present example will s
the steps b and ¢ synchronize using a semaphore key for key waiting and key sending IPC, and b
a and b synchronize using a semaphore as event signaling flag.
1. /* Codes as per Example 9.16 Step1to 5 */

2. /* Prototype definition for the semaphore used as resource key for inter-process communication
port read and port message encrypt read tasks. */

OS_EVENT *SemKeyl1; / ¥Needed when using Semaphore as resource key*/ - ;

/* Codes as per Example 9. 16 Steps 6 to 21. However, create the semaphore Scheylbef iy ailing
OSStart ( ) in main*/- 3
SemKey1l= OSSemCreate (1); I*Declare initial value of semaphore 1 for usmg itasa xesmtroe
key*/

/*:**#***##********************* Aok e o A 3 3k 3 **************#***#****f,
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4, fter the end of codes for ISR_Charlntr, the codes for the Task_Read_Port_ A redeﬁned to show a
§ " :
us¢ of the key*/
% oid Task_Read_ Port A (void *taskPointer) { .

+

itial assignments of the vanables and pme-mﬁmte Xoop statexmnts ﬁm execme monly*l

6.while (1) { /* Start an mﬁmte wkxle—laop *l

7.}cB y emPend (SemFlagl, 0, SmErrPom:er); 1 *Wait for. SemEiagl =1 by OSSemPost fnncnon of
<h l’ er availability check task */.

/*} iz ¢ resource as SemKey presemly > O and decrement it and not allow any mhet task to usc this
ke : e .

8.JOKs emPend (SemKeyl, 0, SemEnBamm), e

9. odes for reading from Port A buffer and stormg at new huffer, whxch wxll be shared with
T4 ;

ot_Port_A and the tasks for transmitting decrypted data to another device */

Release the key to a task waiting for the decrypting*/

Post (SemKeyl);

To exit the infinite. loop at a task that has been assxgned a hlghet pnonty and to let the
’ pnonty task run call OS delay function for wait of 100 ms (ten OS timer tick. This is the
d to let the other-task of lower priority execute Port A decrypt * .

—
co

Of §" Dly (10);

J:¥4End of while loop*/ (

11 *Endafﬂ:eTaskReMPort Afuncﬁon*l S

e, ﬁ’ ***##****************** ok ' “wx; 4 ***** *tﬁé;i*si**/~: e “

13 StartoanskDecrprPnrt_Acodes*/ N e

st ;g_ void Task_Decrypt_Port_A (void ¥askPointer) {

1% " ial assignments of the variables and pre-infinite loop statements tkm execuu: oac,e only"‘l i o

W Bhite (1) (/% Start the infinite loop %

14 cquiring the resource as SemKey1 > 0 and decrement it to not toietpo:t read tasknse th:s key*[

nPend (SemKey1, 0, SemErrPointer); ) ey
Codes for Task_Decrypt_Port_, Aordeclphenngthemessageread ;‘new buffa l i

> _; mPost (SemKeyly,
: eDlyResume (Task_Read_Port, APnonty), /* Resume the delay“ [
v k /* End of while loop*/

/*Endofthe'!hsk _Decrypt_Port_A function */

boic Qe ok e ok e ke o e s ok ke ok e ok o e 1-**********************‘*t******

v.\.-.\.—n'..p—n'
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Example 9.18 R - 1 1

Use of counting semaphore helps in programming for the printer or other bounded buffer problem (pr !fii
consumer problem) (Refer to Section’ 7.5). The use of OSSemPost to increase the count and OSSekPdnd
to decrease the count in a counting semaphore is as folows. Recall Example 9.16. Let us first modi ? this
example as follows.
1. For step a, on the interrupt let ISR_Charlntr executes. It posts a semaphore to task, Task_Read_ P A,
2. For step b, let the task be Task_Read_Port_A. It is for reading the characters when available & p prt
“buffer. Let Task_ReadPortA read a stream of the characters from the buffer. Let the task pi te
characters, as it reads one by one, into a bounded buffer (it is a producmg task; buffer is boun by
a limit like a printer or display buffer). _
3. Forstepc, let the task be Task_Decrypt. It is for decrypting and dlsplaymg the maximum 160 chagietrs
(it is a consuming task; it is like printing from the print buffer).
4. For step d, let the task be Task_Display. Task display the decrypted data at display device.
5. Let the display buffer of 160 characters be shared by Task_Decrypt and is bounded upto 160 addggskes
in memory.
This example shows how the steps b and c synchromze usmg counting semaphore and how
¢ to d synchronize.
1. Let there be a counter SemCount, which counts the number of times a task posting the semd *
ran. Let SemCount s initial value be 0. A first task section must first execute OSSemPost, which incf:
the SemCount to 1. Every: time this task section runs, SemCount increases by 1. Every time i k

2. When SemCount reaches a specific preset value, then a semaphore event-signalling
SemCountLimitFlag sets, and the count resets to 0. As there is an OS call by a delay functid
lower-priority task for deciphering starts running ‘and it acquires the key. The semaphore res
key SemKey becomes unavailable to the reading task and further reading stops till the decip
task releases the key and also executes OSSemPend to decrease SemCount to let the task that regked
the limit run again. i

1. /* Codes as per Example 9.17 Steps 1 and-2*/ :

deciphers a character in another task, it decreases by 1. - § ﬁ

2 /* Prototype definitions for one ISR and three tasks*/
static void ISR_Charlntr (void *IntrVectorPointer); ' ' ' il
static void Task_Read_Port_A (void *taskPointer); 4
static void Task_Decrypt (void *taskPointer);
static void Task_Display (void *taskPointer);
3. /* Definitions for three task stacks */ b
static OS_STK Task_Read_Port_AStack [Task_Read_Port_AStackSize];

static OS_STK Task_DecryptStack [Task_DecryptAStackSize]; / i
static OS_STK Task_ DisplayStack [Task_DisplayStackSize]; ‘ b

4. /* Definitions for three task stack size */ , L
#define Task_Read_Port_AStackSize 100 /* Define task 2 stack size*/ % “
#define Task_DecryptStackSize 100 /* Define task 3 stack size*/ ¥

#define Task_DisplayStackSize 100 /* Define task 4 stack size*/
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5.4 ﬁmuons for four task prioiities. */
fdef] :g‘  Task_ ReadPortAPriority 11 /* Define task 2 priority */
#defin ¢ Task_DecryptPriority 12 /* Define task 3 priority */
#defirld Task_DisplayPrioritv 14 /* Define task $ priority */
i ptotype definit.us for the semaphores */ ‘
*Semklagl; /* Needed when using semaphore as the flag for mtcr—process commumcauon
fh ISR and port read tasks. Port A read task has to wait for ISR notifying the character receipt at port

NT *Sem€ountSend; /* Needed when usmg semaphore for sendmg task semaphore count value
ter-process communication between read and decipher tasks. Port demphenng has to walt for-port
fv » om sending task */

NT *SemKey; /* Needed when usmg semaphore as resource key */

*SemCountRecv; /* Needed when using semaphore for counting the decxphemdfor dlsplay ¥/
des as per Example 9.7-Step-3 to 8. However, the semaphores are to be created and uunahsed as
glier in Step 5 Example 9.16+¥/

1 OSSemCreate (0); /* Declare mmal value of semaphorc 0 for using it as an I_zvent signaling

b intSend = OSSemCreate (0); /* Declare initial value of semaphore = 0 for an event counter for
¥/
HuntDisp = OSSemCreate (0); /* Declare initial value of semaphore = - 0 for using it as a flag for

X
"‘:.,;‘E'% :

e initial Value of semaphore count = 0 for using as a counter that gives the number of times a task,
nds into a buffer that stores a character stream, ran minus the number of times the task which used
cter from the stream ran from the buffer */ AR
% tRecv = OSSemCreate (160); /* Declare initial value of semaphore 160 for 160 free addresses
r recexvnfg the bytes for display */

£52
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Create four tasks as per Step 3, defined by four task identities, Task_Read_Port_A,

g

/
fé

sk Recrypt_ Port_A, Task_EncryptPortB and Task SendPortB and the stack sizes and other TCB
para biers. */
oS §7 reate (Task_Read_Port_A, void (*} 0, (vozd *) & Task] Read Port_AStack -
[Tag i Read_Port_AStackSize], Task_ReadPortAPriority); :
OSTpCreate (Task_Decrypt, void (*) 0, (void *) & Task_DecryptStack
[Ts §~ ptStackSize], Task_DecryptPriority);
(9 it reate (Task_Display, void (*) 0, (void *) & DlsplayStack [Task DlsplayStackSize] Task_Dlsplay
Priofity); :
10. des same as-at Steps 9 to 21 in Example 9.16 */
11. A* {ihe codes for the Task_Read_Port Aredeﬁnedtouseme,semepho:easoounter*/
statk E, id Task_Read_Port_A (void *taskPointer) {

12. | tnal assignments of the variables and pre-mﬁmte ldop statemeats that expmte ome only*l
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unsigned short countlzmtt = 160; /* Declare the buffer-size for the characters countLimit = 160

13. while (1) { /* Start an infinite while-loop. */

14. / *Wait for SemFlag1 1 by OSSemPost function of character avallablhty check task */
OSSemPend (SemFlagl, 0, SemErrPointer),

15. OSSemPend (SemCountRecv, 0, *SemErrPointer); 1* wait for available space in receiving b e r) */
CountLimit = 160; 7* CountLimit reset to 160 */ : - 8
16. /*Read port A buffer byte and write byte into decipher buﬁ"er */
CountLimit —~ ; if (CountLimit >0){ 1
OSSemPost (. Semé‘oWSend), } /* Release the SemCountSend to let the dmpher task start */ ]
17. OSTimeDly (10); /* To exit the infinite loop of this assigned higher priority task to let thgligwer
priority task run call the OS delay function for a wait of 100 ms (ten OS timer tick). This is the ad to
let the other task of lower priority execute Port A’s message deciphering task */ - |
18. }/* End of codes for the action on reaching the limit of putting characters into the buffer */ 3}
19. J; /* End of while loop*/ i
20. } / * End of the Task_Read_Port_A function ¥/
/********************************************************************/
21. /* Start of Task_Decrypt */ .

static void Task _Decrypt (void *taskPointer) { i
2./ Initial assxgnments of the vanabl&s and pre-infinite loop statements that execute only once :

a SRS

23 while (1) { /* Start the infinite loop */ g

24. I* Take the key to not letting the Task_Read_Port_A run before at Ieast one cycle of this whxl c bp*/
OSSemPend (SemCountSend, 0, *SemErrPointer}, ‘

25. /* Codes for Task_Decrypt_Port_A or deciphering for displaymg the message when placed
in new buffer fort */

OSSemPost(SemCountdtsp, 0, En), «

T R

OSTimeDly(10); /* to delay for transfer mnﬁol to dlsplay task */
26. OSTimeDlyResume(Task  ReadPortAPriority); /* Resume task read port A */- 8§
27. }; * End of while loop*/ §

28. }/ * End of the Task_| Decrypﬂunctmn : « -

/***#*********** Hskkeok kiR E ke kK ek ok :*****#**ﬁ***#***’

29. /* The codes for the Task_Display */ '

static void Task_Display (void *taskPointer) {

30. /* Initial assignments of the variables and pre-infinite loop statements that execute only on

31. while (1) { /* Start an infinite whileloop. */ =~
32. /* Codes for displaying the deciphered characters */
OSSemPend (SemComtdxsp, 0, *Err); /* wait for deciphered character */
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€ode for displaying character */

oSYelliPost (SemCountRecv);
34. jOBTimeDlyResume {Task_DecryptPriority);

} 42 End of whaue loop */ SRR
36. :End of the Task_Display function */ :

e e st o o s R ROk R K Rk ok s R sk o ok ok ook ok o sk ok e e sk ek ke ok sk ok skok ook sk Rk
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9.2.6 Mailbox-Related Functions

We have seen in Examples 9.16, 9.17 and 9.18 that the semaphores communicate one of the following.
1. | The occurrence of an event to other task, which is waiting for the event before running.
2. | The availability of a resource in a task to let a section of codes in the task run.
3. | The occurrences of an event number of times before they are taken note by other task.
4. | The availability of a resource in a task to let a section of codes in the task run number of times.

However, suppose the message is a string or is in a data structure or is in a buffer or array. The mailbox IPC
can be|used to communicate a pointer for that information. Refer to Figure 7.6(a), which showed multiple
types gf mailboxes. In MUCOS, the mailbox type is one message pointer per mailbox.

Letfthere be a pointer *msg to the message to be sent in the mailbox, and another *mboxPointer for the
message sending event and retrieving the message itself. MUCOS mailbox IPC functions for the tasks are as
per Table 9.6.

1.|Creating a mailbox for an IPC. Function OS_Event *OSMboxCreate (void *msg) is for creating an
ECB at the RTOS and thus initializing a pointer *mboxPointer to msg. The msg pointer is NULL, if
the created mailbox initialized as empty mailbox.

Task parameters passing M1: *msg is message pointer to which *mboxPointer will initialise. For an IPC,
sendinf the message-pointer *mboxPointer communicates the msg.

Retpirning M1: The function OSMboxCreate ( ) returns a pointer to the ECB at the MUCOS and mboxPointer
at ECB points to msg.

Step 8 in Example 9.19 shows how to use OSMboxCreate function.

2.| Check for availability of an IPC after a message at mailbox. Function void *OSMboxAccept
(OS_EVENT * mboxPointer) checks for a mailbox message at ECB at mboxPointer (an event
pointer). The pointer for the message msg returns from the function, if message is available, mboxPointer
not pointing to NULL but to the msg. After returning, the mailbox empties, and mboxPointer will
point to NULL on emptying of mailbox. The difference with OSMboxPend function is that
OSMboxPend suspends the task if the message is not available and waits for mboxPointer not equal to
NULL.
parameters passing M2: The OS_Event * mboxPointer passes as pointer to ECB that associates with

‘ ing M2: The function OSMboxAccept ( ) checks the message at *mboxPointer and returns
the message pointer *msg presently at MsgPointer. The function then returns NULL pointer if message
pointdr is not available at mboxPointer. Later *mboxPointer will point to NULL, because mailbox
emptigs.

Step 40 in Example 9.19 shows how to use OSMboxAccept to retrieve an error string, if any, available in
the mdilbox without specifically waiting and blocking the task.



Table 9.6 Mailbox Real-Time Operating System (RTOS) Mailbox Functions for the

Intertask Communications

| —— R
Prototype of Service and What are the When is this OS Function Called?
System Clock Function Parameters
Returning and
Passed?!

OS_Event *OSMboxCreate M1 and M1 To create and initialize a mailbox message poinfer for

(void *msg) the ECB of a mailbox message.

void *OSMboxAccept (OS_EVENT M2 and M2 To check if mailbox message *msg is pointed by

*mboxPointer) *mboxPointer. Unlike OSMboxPend function, i does
not block (suspend) the task if message is not |
available. If available, it returns the pointer * and *
mboxPointer again points to NULL. On the retyrn
mailbox empties

void *OSMboxPend M3 and M3 .. To check if mailbox-message pending is availgble;

(OS_Event *mboxPointer, unsigned o , then the message pointer is read and the mailbpx

short timeOut, unsigned byte *MboxErr) emptied and * mboxPointer again points to L. If
message is not available (*mboxPointer points{to
NULL) it waits, suspends the task and blocks further
running (or till the number of ticks = timeOut I
occurs at the system-timer). If pending, then the] task
is resumed on availability, *mboxPointer now L.
Resumes on timeOut also.

unsigned byte OSMboxPost M4 and M4 Sends a message for a task presently at addre: msg

(OS_EVENT *mboxPointer, void *msg) by posting the address pointer of it to the
mboxPointer. Context switch to that task or an
another task if of higher priority will also occuf. If
the box is already full, then the message is not gosted
and the error information is given.

unsigned byte OSMboxQuery MSand M5 See text.

(OS_EVENT *mboxPointer, TR ‘

OS_MBOX_DATA *mboxData) i

! Column 2 refers to the corresponding explanatory paragraphs in the text for the intertask communications using a maﬁbox.

3. Waiting for availability of an IPC for a message at mailbox. Function void *OSMboxPend (OS_Rvent *

at ECB event pointer, mboxPointer. A pointer for the message retrieves on return, if messa
mboxPointer not pointing to NULL but pointing to msg else waits till available or till tim. ut, whi
is earlier. If timeOut argument value is 0, it means wait indefinitely till the message is available.

mboxPointer, unsigned short timeOut, unsigned byte *MboxErr) checks a mailbox message poin%r‘msg

is avi lgble,

hever

Task parameters passing M3: (i) The OS_Event *mboxPointer passes as a pointer to ECB that is assdciated
with the mailbox. (ii) Passes argument timeQut. This resumes that the blocked task after the delay is eluhl to

(timeOut - 1) count inputs (ticks) at the system-clock timer. (iii) Passes reference *MboxErr, a poin

will hold the error codes.

r that
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and th¢ function returns msg. After returning, the mailbox empties. *mboxPointer will later point to NULL,
becah mailbox empties. When message is not available, it suspends the task and blocks as long as *msgPointer
is ndl NULL. It returns NULL pointer if the message is not available (msgPointer pointing to NULL). The
follow g macros will then return true. (i) OS_NO_ERR returns true, when mailbox message search succeeds;
(i) OS|_TIMEOUT returns true, if mailbox message does not succeed during the ticks defined for the timeout
>0; (m OS_ERR_PEND_ISR returns true, if this function call was from the ISR; (iv) OS_ERR_EVENT_TYPE
return true, when * mboxPointer is not pointing to the pointer type variable for msg.

p 39 of Example 9.19 shows how to use OSMboxPend to retrieve an error string, if any, available in the
mailboi by Task_Err, how to retrieve the read string at Task_OutPortB and to specifically wait and block the task.

Rc:{ming M3: The function OSMboxPend checks as well as waits for the message at *mboxPointer

msgPointer, void *msg) sends mailbox message at ECB event pointer, * msgPointer. The message
sent is at msg, as well as at mboxPointer after the posting.

OSMboxQuery (OS_EVENT * msgPointer, OS_MBOX_DATA *mboxData) checks for a mailbox data
and places that at mboxData. It also finds the error information parameters, OS_NO_ERR_EVENT_TYPE
for the ECB.

, 'ia d the task is waiting for dialing and transmmmg of the number after ascertammg that the mlmber
bstgot have an invalid character. Let the waiting tasks be Task _OutPortB and Task._. SemiPopr The
eg dends the string for the telephone number to port B after the wait is over.

ke on detcctmg an invalid character or if the limit of characters expected in the smng is exceeded. In
f pppsent example, the application of OSMboxPend function is for a task-wait for a message as well as
4  error message string also (Refer to wait by OSMboxPend in task, Task_SendPortB wh:ch executes



a servme routmc in case of error smng detcct) For example, in a mobile phone, Task OutPortB : :
_used as: follows When there is no error message, then establish the connection with the cellular se; |
‘then dial and transmit the called number using Task_SendPortB. When there is an error m
}Task,_OugPo,ﬂBf dlrects the mes'sage)to another task; Task_,EtrSR. Another task displays the‘error 1

string warning the user to redial the number. The steps in this operation are as follows. 11
1. Stepa: - Task, ISR_Charlntr interrupts on the port A status ready on avaﬂabdlty ofa charac .|

or
- example, the ISR execntes 1f akey is pressed in an mobile phone keypad (Section 1.10.5). The 4 e of
‘semaphore SemFlagI asin Example 9. 16 suﬁices becausc anIPC will be just for an interruptfent

~ flag.

2. Step 'b: Task__Read Port A waits for the SemFlagI and executes the codes that accumull
characters into an’ array to- o‘btmn a string, str. OSMboxPost posts a message pomter for
i no other key is pressed within a time-out penod. :
3. Step c: Task_Err checks each message read at port A and sends ‘a string, errStr, into’ the
when the character is not a valid character or if the number of characters has exceeded the §
posts the message back into the mailbox if it does not have-invalid characters. For example,
* is not a number in case of a telephone number, Whlchlsmadbythetaskatstepb . .

‘4. Step d: Task_OutPortB waits for str and errsz‘r m the maﬂbox The use of mailbox for the

¢
* *
(s ts
' between steps b and d, and ¢ and d. |
5. 'Step e: Task_SendPortB. Ifthercxsnoermr metasksendsmemessageofporm ‘ i
6. Step f: Task_ErrSR to execute a service routine in case of error. ’
This example shows how the steps a and b synchronize by the IPC SemFlagl, how tasks at the $ieps b
and c synchronize and how steps b to d and ¢ and d synchronize using the mailbox functions of the M§ CPS.

/*DeﬁneBoaleanvanablemdNULmenterDeﬁneeodesasperExampleM?Stepsl*l
‘typedef char int8bit; o
#define int8bit booleait 1: e oo st P
#define false O
#definetrue 1.
I*DeﬁncaNULLpomter*l
#define NULL (void*) 0x0000 :

# define unsxgned byte mputCharsMaxSlze 16 /"= Let. Maxmwn size of teleplmne—numbzr s!nn :16
characters. */
2. /* Preprocessor definitions for maximum number of mter—pmcess events to let the MUCOS '
“memory for the Event Control Blocks */
#define OS_MAX_EVENTS 12/* Let maximum IPC events be 12 */
#define OS_SEM_EN 1/* Enable inclusion of semaphore functions in application. */ -
#define OS_MBOX_EN 1/* Enable mdusxon of mailbox fwnctlons in apphcanon a
/* End of preprocessor commands */
3./* Prototype definitions forISRandﬁvetasks for steps a mfabove *l
static void ISR_Charlntr (void *IntrVectorPointer); L
‘static void Task_Read_Port ﬁ(void*taskl’omter), IR AL o B ‘;
: .

~ static void Task_Eur (void *taskPointer); N 4 T
static void Task_OutPortB (void *taskPointer); ‘ it
static void Task_SendPoitB (void *taskPointer); ‘ :
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stau ibid Task_FErrSR (*taskPointer);

*D x; itions for five task stacks */

statl gs STK Task_Read_Port_AStack [Task_Read_Port _AStackSize];
stati §\ STK Task_ErrStack [Task. ErrStackSize];

statif {¥S_STK Task _! OutPortBStack [Task_OutPortBStackSize];

statib BS_ STK Task_SendPortBStack [Task_SendPortBStackSizel;

statip JIS_STK Task_ErrSRStack [Task_ErrSRStackSizel;
/* Diefihitions for five task stack size */
#de i a’  Task_Read_Port_AStackSize 100 /* Define task 2 stack swe*/
 Task_ErrStackSize 100 /* Define task 3 stack size*/
#de i Task_OutPortBStackSize 100 /* Define task 4 stack size*/
i1 §-  Task_SendPortBStackSize 100 /* Define task 5 stack size*/
#de Task EmrSRStackSize 100 /* Define task 3 stack size*/
4 /4 Bkfinitions for five task priorities. */
3¢  Task_ ReadPortAPriority 10 /* Define task 2 priority */
#de 48 Task_ErrPriority 11 /* Define task 3 priority */
#de § | Task_OutPortBPriority 12 /* Define task 4 priority */
#de # Task _SendPortBPriority 13 /* Define task 5 priority */
tde * | Task_ErrSRPriority 14 /* Define task 6 priority */
5.1 g ototype definitions for semaphores */
OSjHY SemFlagl; / Needed when using semaphore as a flag for inter-process communication from

+*

ISI}‘, arIntr and to Task_Read_Port_A (Port A read task) on port A interrupt */

ey a3 9

%?

OS|HVENT SemCharlInvalid; / Needed when using semaphore as a flag for i inter-process comnmmcatxon
fro k_OutPortB task and to number transmitting task Task_, SendPortB */
OS] H ENT semCharCountLimitFlag;/ Needed when using semaphore as the flag for limiting the character

coung yalue in the inter-process communication between Task | Read Port_A and Task Err *I

6. / § ototype definitions for the mailboxes */

0S,. é NT MboxStrPointer; / Needed when using the mailbox message between steps b and d and
d ahde */

0S| EVENT MboxErrStrPointer; / Needed when using the mailbox message between steps ¢ and d */

7. des as per Example 9.7 Step 3 to 8. However, befom the ‘OSStart () dw senuzphom and matlbox
b created and initialised as in Step 6 Example 9.18. */

Serf i gl = 0SSemCreate (0) /* Declare initia: value of semaphore =0 for using it as an event s1gnalmg
fla ;§

Se ;1 pg2 = OSSemCreate (0) /* Declare initial value of semaphore .0 for using it as an event signaling
flag*¥

sery i?, arCountLimitFlag = 0SSemCreate (0) /* Declare mmal valuc of semaphore =0as anevent signaling
flag %
Sem

:a mumm«

= OSSemCreate 1) /* Declare initial value of semaphore = 1 for usmg it as a resource key*/

* ¥ Blite Mailboxes for the tasks. */

8. MioxStrPointer = = OSMboxCreate (NULL), r* Needed when using mallbox message between steps
b g h to pass a string message pointer*/

g



MboxErrStrPointer = OSMboxCreate (NULL); /* Needed when using mailbox m
between steps bandc to pass a error string message pomter*/
9. ,

»

10. /* Create five tasks as shown in Step 9 Example 9.7 defining five task identities, Task__Rsead
Task_Er, Task_OutPortB and Task_SendPortB and the stack sizes, other TCB parameters. */
OSTaskCreate (Task_Read_Port_A, void (*) 0, (void *) &

Task_Read_Port_AStack [Task_Read_Port_AStackSize], Task_ReadPortAPriority);
OSTaskCreate (Task_Err, void (*) 0, (void *) & Task:ErrStack [Task_ErrStackSize], Task ErrPn

sd

OSTaskCreate (Task_OutPortB, void (*) 0, (vo:d *) & Task_OutPortBStack [Task OutPortBSt RS

Task_OutPortBPriority);
OSTaskCreate (Task_SendPortB, void (*) 0, (void *) & Task_SendPortBStack [Task_SendPortBSta
Task_SendPortBPriority);

OSTaskCreate (Task_Er, void (*) 0, (void *) & Task_ErrStack [Task_ErrStackSize)], Task_ErrPridj
/*****************************************#**************************/ i
11-13. /* Codes same as those in Steps 9 to 21 in Example 9.16. The ISR executes on each -)f
interrupt at port A */ :

7

}/ * End of the ISR_Charlntr function */ , ,
/***********#********************************************************/
14. /* Example 9.16 codes for the Task_Read_Port_A redefined. To use the mailbox*/
static void Task_Read_Port_A (void *taskPomter) {
/* Initial assignments of the variables and pre-infinite loop statements that execute only once*/
char *portAdata; boolean find Chrinvalid (chr [ ]);
char [ ] portAinputStr; /* Let port A input string be an array to hold the data from port A*/ g
unsigned byte charCount = 0; /* To count the number of characters read from the port. The counter thi
the number of times the data sent into a buffer (portAinputStr in present case) that stores a character
. ran minus the number of times the task, which used the character from the stream, ran from the buff ¢
boolean charlnvalid = false; /* Initialize charlnvalid flag as false */

x:e‘

while (1) { /* Start an infinite whxle—loop and Wait for SemFlagl posting by OSSemPost funcu 1

character-availability */
OSSemPend (SemFlagl, 0, SemErrPomter),
15. Port_Alnputstr [chrCount]} = PortAData;

16. /* Code for reading a byne from buffer that the ISR_Charlntr wrote before postmg SemFlag 1

17. /* Actions on maximum size exceeding the string buffer Size and on character found invalid ¥
if (charCount > inputCharsMaxSize) {OSSemPost (semCharCountlettF lag);} 1* P
semCharCountLimitFlag */ =

findChrInvalid (Port_ AInputStr) {/* Code for check */ return (chrInvalid = true); }

if (charlnvalid = = true) {OSSemPost (Semcharlnvalid); . “

et . T
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pxit the infinite loop of this higher priority assigned task to let the lower priority Task_Err, we call the

i fay function that forces a wait of 20 ms (two OS timer ticks) or until delay resume function executes.
l the method to let the other task of lower priority execute */

eDly (2); /* Delay by 20 ms (two timer ticks) to let lower priority Task_Err run */

igunt =0; /* Reset the character counter to 0. */

'# End of Codes for the action on character invalid or reaching the limit of putting characters into the

buffef */ ,

19.1/4Let the charCount increase after one character has been put into the string holding the character
strdam*/

char(ount ++; /* Increment the character count */

/* If 48 ASCII code for start of text is found then initialize charCount = 0. */

20.:.If{portAinputStr [chrCount] = = 0x02) {charCount = 0;};

21.}/4 Dther codes in case required */;

22.|Fpr sending string into mailbox if maximum characters reading over*

23./4 codes for
Count = = input CharsMaxSize) {OSMboxPost (MboxStrPointer, port A InputStr); charCount = 0;

ey
-

~
T4

b 5) is found send the message pointer String to the waiting mail box at Task_OutPortB and make
itia} charCount = 0 again for next string*/
tAinputStr [charCount] = = 03)

iﬁvoid Task_Err (void *taskPointer) { / Initial assignments of the variables and pre-infinite
ftatements that execute once only*/

5??‘ d byte [ ] msgBuffer = 0 /* Declare initial value of msgBuffer = 0 */

‘ l:aration for an error string for using when at the Step d an error invalid-character is found at mailbox.
] ErrStrl = “Invalid Character Found”;

gelaration for an error string message for task at Step d when the limit exceeds. */

J ErrStr2 = “Characters in the message exceeded the limit declared at task for read”;

dan invalid = false; /* Declare invalid variable ‘false’ and will be assigned ‘true’ in case a character is
invalid. * /

28.\while (1) { /* Start the infinite loop */

29.1/4 Post Limit of Message Exceeded Message to task at step d. */

31.}/4 Codes for reading Msg */
msgB er = OSMboxPend (MboxStrPointer, 0, MboxErrData);

32.2/‘ éZ;Post Mailbox message to task at step d if an invalid character is not detected else Post invalid
chd'?er error message */
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33. OSSemQuery (SemCharlnvalid, SemData);

34. /* Take semCharlnvalid (if >0) by accepting the semCharlnvalid semaphore. Task does not ,

even if semaphore not available (not > 0). This task has to run whether count is invaled not.
if (SemData -> OSCnt == 0 && chrinvalid = = true) {OSMboxPost (MboxErrStrPointer,

OSSemAccept (semCharInvalld) } else {OSMboxPost (MboxStrPointer, msgBuﬁ'er), OST1me I

OSTimeDlyResume (Task_| ReadPortAPnonty, /* Resume the task Port A Road*

J; 1* End of while loop*/

35. } / * End of the Task_Err function */
/******************************#***************************************/
36. /* Codes for the Task_OutPortB */

static void Task_OutPortB (void *taskPointer) {

37. /* Initial assignments of the variables and pre-infinite loop statements that execute once only
char [ ] message; /* Declare error free message string pointer*/

char [ ] errMessage; /* Declare error message pointer. */

38. while (1) { /* Start an infinite while-loop. */

39. /* Wait for Mailbox Message available (not NULL) */

message = OSMboxPend (MboxStrPointer, 0, MboxErrPointer);

40. /* Check for Mailbox Error Message available (not NULL) */

ertMessage = OSMboxAccept (MboxErrStrPointer);

if (errtMessage ! = NULL) { OSMboxPost (MboxErrStrPointer, errMessage); }

else {
/*Codes for again sending the Port B string of characters to task for transmission; the message is &lwd to

see that it has no invalid character or that it never exceeds the limits of its size..*/
OSMboxPost (MboxStrPointer, message);
|5

/* To exit the infinite loop at higher priority assigned task to let the lower priority task run, g

OS delay function for wait of 20 ms (two OS timer ticks). This is the method to let the ot
of lower priority execute Port B sending the characters. */

OSTimeDly (2);

41. OSTimeDlyResume (Task_ErrPriority); /* Let delayed higher priority task err resume. */

J; 1* End of while loop*/ ‘ '

42. }/ * End of the Task_OutPortB function */
/***********************************************************************/

43. /* Codes of Task_SendPortB */

static void Task_SendPortB (void *taskPointer) {

/* Initial assignments of the variables and pre-infinite loop statements that execute only once % %

unsigned char [ ] message; .

44. while (1) { /* Start the infinite loop */

45,

46. /* Wait for error free message from Port B. If available, retrieve it. */
message = OSMboxPend (MboxStrPointer, 0, MboxErrPointer);

R g“:,«jéaju;%;,hg’;a;wﬁ%;;%m i
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Codes for sending the valid message to a memory buffer where it is saved or to a network for
pission */

/* End of while loop*/

J+ End of the Task_SendPortB function */

% ************************************************************/

50. f* Codes of Task_Err */

st&t  void Task_Err (void *taskPointer) {

i itial assignments of the variables and pre-infinite loop statements that execute only once */ -

: ] ertMessage; /* Detlare efror message poititer. *7- - SR i e T T R e
While (1) { /* Start an infinite while-loop. */

erg: essage = OSMboxAccept (MboxErrStrPointer);
. £* Codes for the action on error message. */
if S : cmp (errMessage “Invalid Character Found”) == 0) {

iff( Etrcmp (errMessage, “ Characters in the message exceeded the limit declared at task for
read?) ==0) {

/4 Qbdes for actions needed on limit exceeded. Codes for displaying on an LCD “Message too
longgo Accept. Dial again”. */

e

5
W

TimeDlyResume (Task_ SendPortB); /* Resume task_SendPortB

54. §; /* End of while loop*/
5%. 3 / * End of the Task_Err function */
/ﬂ* ?*****************************************************************/

It is

is posted in front.) A task can thus insert a given message for deleting either in the FIFO mode or in the LIFO
modd. (Note: The IPC queue differs from the data structure queue with respect to the available methods for
inserting an element into a queue. The OS controls the IPC queue.)



Refer to Figure 7.12. MUCOS permits a queue of an array of pointers. Let there be a pointer, **Qtgp, to a
queue of message pointers, and there be two pointers, * QheadPointer and *QtailPointer, which sepd and
retrieve, respectively, the message pointer for the message. MUCOS queue functions for the tasks’ § are
as per Table 9.7. MUCOS permits up to 65,536 message-pointers into a queue (i.e., the MUCOS quege size
can be 65,536). The post-front function enables insertion such that the waiting task does LIFO retrieva] of the
message-pointer, hence of the message.

1. Creating a Queue for an IPC. OS_Event QMsgPointer = OSQCreate (void **QTop, unsigned short
gSize) is used for creating an OS’s ECB for the Q7op and queue is an array of pointers at QMsgHointer.
The array size can be declared as maximum 65,536 (Oth to 65,535th element). Initially, th¢ array
QMsgPointer points to NULL.

Table 9.7 Queue Functions for the Intertask Communications

g -_« ]
Prototype of Service and Parameters 4 When is this Operating System (OS) Called?
System Clock Function Returned and Passes
OS_Event OSQCreate (void RandR = OS creates a queue ECB. This creates and
**QTop, unsigned short qSize) initializes an array of pointers for the queue

- QTop. Queue can be of maximum size = qSj
QTop should point to top (zeroeth element of{an
iy array). ECB points at the QMsgPointer.
void *OSQPend (OS_Event Sand S Refer to text.
*QMsgPointer, unsigned short
timeOut, unsigned byte *Qerr)

unsigned byte *OSQFlush LandT To eliminate all the messages in the queue have

(OS_EVENT *QMsgPointer) B been sent. This function checks if a queue hag a
message pending at QMsgPointer (the queue front
pointer at the ECB is not pointing to NULL).
Function then returns all the message pointe;
between the queue front pointer and queue back
pointer at the ECB. It returns error codes and
QMsgPointer will point to NULL.

unsigned byte OSQPost Uand U Sends a pointer of the message QMsg to the
(OS_EVENT*QMsgPointer, QMsgPointer at the queue back. The message
void *QMsg) : inserts at a queue tail pointer in the ECB.
unsigned byte OSQPostFront Vand V Sends QMsg to the QMsgPointer at the queug. It
(OS_EVENT *QMsgPointer, points to the queue head pointer in the ECB where
void * QMsg) pointer for QMsg now stores pushing other

message pointers backward.! _
unsigned byte OSQQuery Xand X To get queue message’s information and errog
(OS_EVENT *QMsgPointer, : information.

OS_Q_DATA *QData) i

Column 2 refers to the corresponding explanatory paragraph in the text. !
1Use OSQPostFront or OSQPost functions according to the message priority, if the message has a higher priority, post Jt at the
front; else, post as usual in a queue. We can use post-front and post functions to build a queue in which an array of meésage
pointers are stored and ordered according to their priorities. Queue is then called a prioritized ordered queue. Use of OSQPdstFront
and then OSQPend enable indirectly a LIFO mode of retrieval of a message pointer to priority message.
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initially, NULL if none is available.

ple 9.20 explains the use of OSQCreate function.

2. | Waiting for an IPC message at a queue. Function void *OSQPend (OS_Event *QMsgPointer, unsigned
short timeOut, unsigned byte *Qerr) checks if a queue has a message pending at ECB QMsgPointer
(QMsgPointer is not pointing to NULL). The message pointer points to the queue front (head) at the
ECB for the queue defined by QMsgPointer. It suspends the task if no message is pending [until either
the message received or the wait period, passed by argument timeOut, finishes after (timeOut — 1)
ticks of the system timer]. The queue head pointer at the ECB will later increment to point to the next
- | message after returning the pointer for the message.

Retprning S: The function returns pointer to a queue at ECB. It also returns the following on running the
macrod as under: (i) OS_NO_ERR returns true, when the queue message search succeeds; (ii) OS_TIMEOUT
returnsitrue, if queue did not get the message during the ticks defined by the timeQOut; (iii) OS_ERR_PEND_ISR
returng true, if this function call was from the ISR; (iv) OS_ERR_EVENT_TYPE returns true, when
Pointer is not pointing to the queue message. '
parameters passing S: (i) The OS_Event *QbackPointer passes as pointer to the ECB that is associated

t — 1) count inputs (ticks) at the system clock. (iii) It passes *err, a pointer for holding the error code.
ple 9.20 explains the use of OSQPend function.

3. | Emptying the queue and eliminating all the message pointers. Function unsigned byte *OSQFlush
(OS_EVENT *QMsgPointer) checks if a queue has a message pending at QMsgPointer (the queue
front pointer at the ECB does not point to NULL). The function returns all the message pointers
between queue front pointer and queue back pointer at the ECB. It returns an error code and QMsgPointer
¢ lat ECB. These will later point to NULL on return from the function.

Task parameters passing T: The OS_Event *QMsgPointer passes as pointer to the ECB that is associated
queue.

ming T: After the function OSQFlush ( ) executes, the error macros returns as follows: OS_NO_Err

*QMsgPointer, void *QMsg) sends a pointer of the message *QMsg. The message pointer QMsgPointer
(queue tail pointer) points to the QMsg.

parameters passing U: The OS_Event *QMsgPointer passes as pointer to the ECB that is associated
queue tail.

ming U: After the function OSQPost ( ), the message pointer *QMsg is passed for the message to
ointer and the error macros return the error code as follows: (i) OS_NO_ERR returns true, if queue
g succeeded, (i) OS_ERR_EVENT_TYPE returns true, if *QtailPointer is not pointing to the queue
i) OS_Q_FULL returns true, when queue message cannot be posted (QSize cannot exceed a limit set on
the queue).

ple 9.20 explains the use of OSQPost function.

5. |Sending a message pointer and inserting it at the queue front. The function unsigned byte OSQPostFront
(OS_EVENT*QMsgPointer, void *QMsg) sends QMsg pointer to the QMsgPointer at the queue, but it
is at the queue front pointer in the ECB where pointer for QMsg now stores, pushing other message
pointers backwards.
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Task parameters passing V: The OS_Event *QMsgPointer passes as pointer to the ECB that is assogiated

with the queue. The second argument is the message QMsg address that is the queue front address.

Returning V: After the function OSQPostFront ( ) executes the following error macros returns as ynder:

(i) OS_NO_ERR returns true, if the message at the queue front is placed successfully; (i)) OS_ERR_EVENT

returns true, if pointer QtailPointer is not pointing to message queue; or (iii) OS_Q_FULL returns true, if qSi
declared n and queue had n messages waiting for the read.

Example 9.20 explains the use of OSQPostFront function.

6. Querying to find the message and error information for the queue ECB. The function unsigned byte

0SQQuery (OS_EVENT *QMsgPointer, OS_Q_DATA *QData) checks for a queue data and places

that at QData. It also finds the error information parameters, on executing the following mgcros:

OS_NO_ERR and OS_ERR_EVENT_TYPE.

Task parameters passing X: The function OSQQuery passes (i) a pointer of the queue at *QMsgPpinter

ECB and (ii) a pointer of the data structure at *QData.

Returning X: QData has pointer to the message at OSMsg, number of messages at OSNMsgs, OSQSize

as queue size in terms of the number of entries permitted and list of the tasks waiting for the megsage.

After the function, the following macros returns true: (i) OS_NO_ERR, when querying succeeds or

(ii) OS_ERR_EVENT _TYPE, if *QMsgPointer is not pointing to queue message. ;

s was

Example 9.20

message that needs to be posted to another waiting task in a sequence. Further, any number of error me f_,,r ge
sent by the Task_Err can also be posted into the same queue as priority messages. The codes get simp ‘

for the message as well as error message string. The steps in this operanon are as follows.
1. Step a: ISR, ISR_Charlntr interrupt on the port A status for the availability of a message.‘
example, the task is activated if, at port A, a key is pressed for sending the character or a nety '
input data or a set of numbers are keyed on a keypad of mobile.) It puts the characters for mes o
portAData buffer. Semaphore SemFlagl (as in Example 9.16) posts an event occurrence as an §PIC.
2. Step b: Task_ReadPortA waits for the SemFlagl and executes the codes that post the o
checks and, posts in front the error in the input message into a common queue.
3. It checks each character or message read at port A and sends a string, errStr, into a general mespa
queue when the character or message has invalid character or message queue is full. For examj
the character or message is not a number in the case of a telephone number. i
4. Step c: Task_MessagePortA waits for the characters or messages as an array of pointers. Thé,&t ask
also sends the messages for display.
5. Step d: Task_ErrLogins also waits message for the error posted in a queue for error logins.




Hea&» ,e ‘Operating System Programming-1: MicroC/OS-1l and VxWorks ’

Tin ibxample shows how the steps a and b synchronize by the IPC SemFlagl, how tasks-at the steps b
and k §ise queue to synchronizes and how the steps b to d synchronize using the queue functions of the
MU : h
L./4 he des are the same as in Step 1 Example 9.19, except that the statements are shown in bold for the
que e ;The mailbox-related statements are replaced by the queue-related messages */

2. 14 Peprocessor definitions for maximum number of inter-process events to let the MUCOS allocate
menpopy for the Event Control Blocks */

#defirk OS_MAX_EVENTS 12/* Let maximum IPC events be 12 */

#defi . p OS_SEM_EN 1/* Enable inclusion of semaphore functions in applications using MUCOS */
fdef] # OS_Q_EN 1/* Enable inclusion of queue functions in applications usmg MUCOS */

* =_s- of preprocessor commands */

3. /4 Beptotype definitions for ISR and tasks for steps b to d above. */
statif Mpid ISR_Charlntr (void *IntrVectPointer);

stati ,~’| Task_ReadPortA (void *taskPointer);

stati 1d Task_MessagePortA (void *taskPointer);

statif 1d Task_ErrLogins. (*taskPointer); -

4. /1IN 4 pfinitions for task stacks */

statig [3S_STK Task_ReadPortAStack [Task_ReadPortAStackSize];
static 3S_STK Task_MessagePortAStack [Task_MessagePortAStackSize];
stati ,S_STK Task_ErrLoginsStack [Task_ErrLoginsStackSize];

5. /4 Ipfinitions for task stack size */

#de ae Task_ReadPortAStackSize 100 /* Define task stack size*/

# + Task_MessagePortAStackSize 100 /* Define task stack size*/
Task_ErrLogmsStackSm 100 /* Define task stack size*/

6. AL “ﬁnmons for task priorities. */

#definé Task_ ReadPortAPriority 10 /* Define task 2 priority */

#defingg Task_ErrPriority 11 /* Define task 3 priority */ -

#define Task _MessagePortAPriority 12 /* Define task 4 priority */

#define Task _ErrLoginsPriority 14 /* Define task priority */

7.1 & ototype definitions for semaphore */

0S H VENT SemFlag1;/ Needed for using the semaphore as a flag for inter-process communication between

portjstus interrupt, ISR_Charlntr and port read task, Task_ReadPortA Port A read task waits for ssmaphore

till A interrupts and puts the message in port A data buffer. */

(0N f" 'ENT SemCountLimitFlag; / *Needed when using the semaphore as flag for reaching the limits of
semis - Hore count in the inter-process communication between port read and port read decipher task. Port
reading has to wait for port read */

(0 -= NT *SemKey; /* Needed when using the semaphore as resource key by Task_ReadPortA and
Task _Fr */

0] ' NT *QMsgPointer; / *Needed when using queued message between steps b and d and steps d
and'e 4

V(;ii gPointer [QMessagesSize]; / *Let the maximum number of message-pointers at the queue be
Q gesSize. */

.
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OS_EVENT *QErrMsgPointer; / *Needed when using a queued message between steps ¢ and d*« ]
void *QErrMsgPointer [QErrMessagesSize]; / *Let the maximum number of error message-poi
the queue be QErrMessagesSize. */ &
9. /* Define both queues array sizes. */ 7
#define QMessagesSize = 64; /* Define size of message-pointer queue when full */

#define QErrMessagesSize = 16; /* Define size of error message-pointer queue when full */
10. /* Codes for port input reading from Port A and storing a character or message at a quegej or
buffer. Alternatively, modify the code for reading from a port at NIC or any other devg
penpheral */ o

at

11. /* Codes as per Example 9.7, Steps 3 to 8. However, before the ‘OSStart ( );’, the semaphore a
must be created and initialised as under: */
SemFlag! = OSSemCreate (0) /* Declare initial value of semaphore = 0 for using it as an event sig}
flag*/
SemCountLimitFlag = OSSemCreate (0) /* Declare initial value of semaphore = 0 as an event sigall
flag*/

12./* Declare initial count as 0 as a counter that gives the number of times a task, which sends into atjuf}
that stores a character or message stream, ran minus the number of times the task which used the chita
or message from the stream ran from the buffer */ 3
SemCount = OSSemCreate (0);
13. /* Create Two queues for the tasks, one general purpose queue and another for error logins only
queue for errors is posted messages after the Task_messagePortA selects error messages from the gend
queue. */

/* Define a top of the message pointer array. QMsgPointer points to top of the Messages to start
QMsgPointer = OSQCreate (&QMsg [0], QMessagesSize);

/* Define a top of the message pointer array. QMsgPointer points to top of the Messages to start
QErrMsgPointer = OSQCreate (&QErrMsg [0], QErrMessagesSize); /* Needed when using
message between steps ¢ and d to pass a string message pointer*/

14.

15. /* Create Tasks as per Step 3 defining by tasks—Task_ReadPortA, Task_Err, Task_MessagePor! ‘
Task_ServiceMessage and the stack sizes, other TCB parameters. */

Task. ReadPortAPnonty)
OSTaskCreate (Task_MessagePortA, void (*) 0, (void *) & Task_MessagePortAStack § a&k_
MessagesPortAStackSize], Task_MessagePortAPriority); "
OSTaskCreate (Task_ErrLogins, void (*) 0, (void *) & Task_ErrLoginsStack [Task_ErrLoginsSta ike],
Task_ErrLoginsPriority); *
16. /* Codes same as at Steps 9 to 21 in Example 9.16 */
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17. }41End of the ISR_Charlntr function */
/***M*‘L*************************************************************’
18. /4 Godes for Task_ReadPortA redefined to use the key, flag and 16-bit value and mallbox*l
static\vgdd Task_ReadPortA (void *taskPointer) {
/* Inikigh asmgnments of the variables and pre-infinite loop statements that execute only once */
char | PportAdata;
Char f }imsgBeginStr = “Messages Begin”;
booldag QFull = false,
d short msgCount = 0;
byte [ 1 msgBuffer / *Declare initial value of msgBuffer */ -
e an error string for step d error invalid message data found to the queue >
char | 5 rrStrl = “Invalid Message Data Found”;
/* Ddcle an error string message for task at stepdwhenﬂxelmaime&s *l
char | ErrStr2 = “Array Size exceeded the Limit. Queue Full”;
booldagiinvalid = false; /* Declare invalid variable ‘false’ and will be assigned ‘tma when chatac&er or:
i read is found invalid. * /
S ' rt an infinite while-loop and Wait for SemFlagl 1by OSScmPost flmetmn of charactemrmsage-
. 3
availjthy ty from ISR_CharlInt */
l
{

OSSangend (SemFlagl, 0 SemErrPointer);

/* Pas »5 e string to initiate start of the message */

if (mk ount == 0) {OSQPostFront (QMsgPointer, MsgBeginStr);}
20. / \ctions on maximum size exceeding the string buffer size */

if ( rhsfCount > = QMessagesSize) {OSQPostFront (QMsgPointer, ErrStrZ)

Qfull 4 frue; msgCount = 0;}

/* Cqdi for checking any invalid character or message in port Abuffer*/

if (invqlid = = true) {msgCount = 0; OSQPostFront (QMsgPomter EtrStrl),}

}i/* Bk of Codes for the actions on reaching the queue array limit of the puttmgﬁm message polmrs into -
the b r or on finding an invalid message character or data */ ‘

21./ % ted}earrayelememdmtretumedasPmtAdatamwﬂmponAmputstnng*l

if (Qfufl = = false |l invalid = = false)

{OSQPpst (QMsgPointer, &portAdata);

/*Lepp : pessage counter value increase after one character or message has been putmwﬂ)e Strmg hoidmg \
the d ;,; er or message stream*/ : : ‘
msgE€dunt ++; }

22. / fet Task _MessagePortA start by delay */

23. QS gx eDly (2);

24 ‘ [kher codes for read port task*/

25. X * End of while loop*/

26. )/ F End of Task_ReadPortA function */

27. ™}

/***k 3‘*=l<’l=>l‘=lnl==t0lnl=**=|==4|=3ll’lﬁ’Iﬁ’l‘=l¢=|t3|‘=l==|=*=l==lt11t=l=*ﬁlﬂlnlﬂﬁ*!l'*’lt=l‘3|<>l==(==l<=k=l==l==l‘>i==lﬂ|‘4=3l==l==l€>l‘=|=**ﬂdululuk!’t/

'e
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28. /* Codes for the Task_MessagePortA */
static void Task_MessagePortA (void *taskPointer) {

29. /* Initial assignments of the variables and pre-infinite loop statements that execute only once ’:‘ﬂ

void * message;

30. while (1) { /* Start an infinite while-loop. */

31. /* Wait for Queue Message Pointer available (not NULL) */
&message = OSQPend (QMsgPointer, 0, QErrPointer);

32. /* Find if the message has invalid character or the messages found as Error Messages. Check fo uy

Error Message available (not NULL) */

if (strcmp ((char *) message, “Invalid Message Data Found ”)==0) {OSQPost (QErrMsng

message); OSTimeDly (2)};

33. if (strcmp ((char *) message , “Array Size exceeded the Limit.. Queue Full”) == 0){O :3‘
(QErrMsgPointer, message); OSTimeDly (2);}; OSTimeDlyResume (Task_ErrPriority); /* Let dgfa]

higher priority task resume. */
&message = OSQPend (QMsgPointer, 0, QErr);
34. /* while (Strcmp (char *) message, “Messages Begin”){

transmit */}
35. /* To exit the infinite loop at the task that has been assigned a higher priority and to let the next Y‘
Errlogins task run, let us call the OS delay function for wait of 20 ms (two OS timer ticks).
method to let the other task of lower priority execute. */
OSTimeDly (2);.
36. OSTimeDlyResume (Task_ReadPortAPriority); /* Resume Delayed Task_ReadPortA */
}; /* End of while loop*/ ‘
37. }/ * End of the Task_MessagePortA function */
/*******************************************************#**************,
38. /* Codes of Task_ErrLogins */
static void Task_ErrLogins (void *taskPointer) {
/* Initial assignments of the variables and pre-infinite loop statements that execute once only*/
void errorLogged; / Declare error message pointer. */
39. while (1) { /* Start an infinite while-loop. */
40. /* Check for Mailbox Error Message available (not NULL) */
&errorLogged = OSQPend (QErrMsgPointer, 0, QErrPointer);
41. /* Codes for the action as per the error logged in */
42. if (errorLogged = = “ Invalid Message Data Found”) {

/* Codes for actions needed on invalid character or message found. For ex;;f !

codes for displaying “Invalid Number Dialed. Dial Again” on an LCD. */

) ,
43. if (errorLogged = = “ Array Size exceeded the Limit. Queue Full ) {

hiy
the




_?Operating System Programming-i: MicroC/OS-Il and VxWorks

44. /*t:m%des for actions needed on limit exceeded. Codes for displaying on an LCD “Message too

long t Accept. Dial again”. */

}

OSTimhdDlyResume (Task_MessagePortAPriority); /* Resume the ServiceMessage */
Y 1 5‘ i of while loop*/

45. } | 1End of the Task_MessagePortA function */ 4
/**** ¢ 7’**********************************************************/

isticated embedded systems, there is a popular RTOS, VxWorks from WindRiver® (http://
www.windriver.com/). VXWorks is a high-performance, Unix-like, scalable RTOS, and support to ARM, ColdFire,
MIPS, Pdntium, Intel X-Scale, Super H and other popular processors for embedded system design. VxWorks
RTOS design is hierarchical (Section 8.9) and is for hard real-time applications. It supports kernel mode execution

VxWarks is supported with powerful development tools that make it easy and efficient to use.
VxWorkd supports many advanced processor architectures. VxWorks supports ‘Device Software Optimization’,
is kaid to be a new methodology that enables the development and the running of the device software

version.
VxWq
1.

ks provides for the following.
ultitasking environment using scheduler which supports IEEE standard POSIX scheduler and which
also supports the in-house developed scheduler.

2. *Supports ability to run two concurrent OSs on a single processing layer.
3. :Miultiple file systems (Section 8.6.2) and systems that enable advanced multimedia functionality.
4. - Synchronization using a full range of IPC options (Section 7.9) that includes. (i) event-signalling

ag, (ii) mutually exclusive access using resource key (mutex), (iii) counting mechanism using three
:types of semaphores in the tasks, (iv) queue, (v) socket and ISRs and includes POSIX standard
*smaphore and other IPCs (Sections 7.8.3, 7.9 to 7.15 and 8.12). Also supports real-time processes
s. It also support openSource TIPC (transparent inter-process-communication) protocal for network
‘apd clustered systems environment. [PTTS 1.1 is latest release in December, 2007 for Linux and
xWorks.]
Different context saving mechanism for the tasks and ISRs (tasks have separate TCBs and stacks, and
Rs use a common stack due to nesting of the calls).
atchdog timers.
Firtual 1O devices including pipes and sockets (Sections 7.14 and 7.15).
irtual memory management functions.
ower management functions that enhance the ability to control power consumption, and automatic
detection and reporting of common memory and other errors.
terconnect functions that a support large number of protocols, including IPv4/IPv6 dual mode stack
epady APIs.



VxWorks TCB saves the following task information for each task.
1.
2.

VxWorks also provides:

DRk

6.

Control information for the OS that includes priority, stack size, state and options.
CPU context of the task that includes PC, SP, CPU registers and task variables.

Pipe drivers for IPCs and pipe is an IO virtual device.
Network transparent sockets.

Network drivers for shared memory and Ethernet.
RAM ‘disk’ drivers for memory-resident files.
Drivers for SCSI, keyboard, VGA display, disk and parallel port of a computer system, HDD, diskette,
tapes, keyboard and displays.
VxWorks 6.x provisions for processor abstraction layer. It enables application system design|by user
when using new versions of a processor architecture.

VxWorks 10 system also includes the POSIX standard asynchronous 10s and UNIX standard uffered
IOs. It also provides for simulator (VxSim) (Section 14.2.3), software logic analyser (WindView)), Code
coverage study tool, MemScope, StethoScope (Section 1.4.7 Table 1.2) network facilities between VikWorks
and TCP/IP network systems. For many other facilities, we can refer to VxWorks programmer’s gdide and

VxWorks Network Programmer’s Guide provided with the product.

9.3.1 Basic Features

A summary of the important features of VxWorks that are essential in a sophisticated embedded system

design are as follows:
1.

VxWorks is a scalable OS (only the necessary OS functions become part of the applications codes,
thus having reduced memory requirements). The run-time configurable feature gives al higher
performance in VxWorks. The functisons needed for task servicing, IPC and so on must be predefined
in a configuration file included in the user codes. Pre-emptive latency minimization is there a$ not all
the functions are at the kernel (Section 8.1).
RTOS hierarchy includes timers, signals, TCP/IP sockets, queuing functions library, NFS{ RPCs,
Berkeley Port and sockets (Section 7.15), pipes (Section 7.14), Unix-compatible loader, |
interpreter, shell, debugging tools and linking loader for Unix. (These are similar to system t.
scheduler runs these, as it runs the ISRs.)

context saves fast when the CPU access changes to a higher priority. However, VxWorks
flexibility that there can be a set of tasks (different tasks of the same priority), which run in tie-slice
(round robin) mode (Section 8.10.2). Each task in a set of tasks executing round robin runs for given
number of system-clock ticks and after timeout becomes the last in a queue of the set. We ¢an use
preemptive priority and time-slicing scheduling simultaneously. (Note: The preemption priotity and
POSIX FIFO scheduling are identical).
Refer to Examples 9.19 and 9.20. The ISR interrupt flag was checked and reset for new intefrupt in
ISR_Charlntr and the ISR passed a semaphore (message) to run the waiting task Task_ReafiPortA.
VxWorks RTOS schedules the ISRs separately and has special functions for interrupt handling [Refer
to Section 9.3.3 Table 9.10].

. VxWorks has system-level functions for RTOS initiation and start, system clock ticks (interrupts) ifjitiation

and the ISR functions, ISR connecting to interrupt vector and masking functions. Recall Sectiohs 7.8.4




10,

11,

Operating System Programming-I: MicroC/OS-1l and VxWorks 455

and 8.10.3. For the critical section (section of codes which access the shared resources or variables) in
the ISRs, VxWorks has the interrupts disabling and enabling functions that execute at entering and
exiting the section, respectively (semaphore pending functions as event-signalling flag, and counting
should not be invoked in the ISRs).

. |If a task is expecting a message from another task, which is being deleted by using the task delete

function, then RTOS inhibits the deletion when an option called ‘Deletion Safe’ is used.

. |VxWorks has task service functions (Table 9.8). VxWorks task creation (initiation) by itself does not

make a task in a list of active tasks. Active task means that it is in one of the three states; ready,
running, or waiting (blocking or pending). VxWorks not only has the task creating, running, waiting
(blocking or pending till a time out or till resource available), suspending (inhibiting task execution)
and resuming, but also the functions for task spawning (creating followed by activating). VxWorks
also includes the task-pending cum suspending and pending cum suspension with timeout functions.
VxWorks also has the tasks, which have a state and an inherited priority (Section 7.8.5).

VxWorks has task delay functions and task delaying cum suspending function (Section 9.3.2).
VxWorks has the shared memory ailocation functions and bounded ring buffer allocation for sharing
the memory and buffers between the tasks and ISRs. To improve the performance of RTOS, VxWorks
provides a shared address in memory to all the tasks. This helps in fast access through the pointers. A
pipe need not be allocated a separate memory space. Of course, there is an attendant risk due to a
possible illegal access.

'VxWorks has IPC functions that are more sophisticated than MUCOS functions. Recall that MUCOS
has identical semaphore functions for event-signalling flags, resource-acquiring keys and counting
isemaphores. Recall the use of the semaphore SemKey with OSSemPend and OSSemPost functions on
SemKey. SemKey was used as a resource-acquiring key by the various tasks in Examples 9.17 to 9.20.
'VxWorks provides for three types of semaphores separately (POSIX-IPCs and TIPCs are additional).
'VxWorks has special features for mutual exclusiveness in a critical region. We use a mutex
maphore for the resource key when using VxWorks. [Only the task that takes the resource key through
mutex semaphore can release (give or post) the key. No other task can release it. This provides mutual
clusiveness.] One type of semaphore used as mutex has the following special features: (i) One task can
¢ protected from being deleted by any other task. Thus, unprotected deletion cannot occur when using
mutex semaphore function with the deletion safe option. At mutex creation the option is selected to
clude the deletion protection. (ii) When a task acquires the key using the mutex priority inversion can
prevented with the priority inversion safe option. The priority assignment of high-priority task can
ow inherit (during execution of critical section) so that in case of pre-emption by an intermediate
iority task, the high-priority task does not get blocked (Section 7.4). This prevents priority inversion
ituations during execution of the critical section.

e unlock () and lock () functions are available for the tasks and interrupts, for disabling other
sk but not interrupts or enabling pre-emption (task switching) as alternative to resource locking by
utex semaphore.

he lock and unlock functions in VxWorks do not cause the priority inversion problem
Sections 7.8.5 and 8.10.3). The priority first inherits and then returns to the original ones.

t us recall Figure 7.4(a) in Section 7.7.6 to understand P and V mutex semaphores used for locking
e resources. VxWorks provides for P and V semaphore functions also.

nlike MUCOS, VxWorks has no separate functions for the mailbox that distinguish the
ailbox from the message queue. VxWorks messages can be queued. It provides for sending
essages of variable length into the queues. (MUCOS queue functions permit a pointer only for a
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when a message is of higher priority. VxWorks also supports this post and post-front feature as in
There are additional special features with the message queues in VxWorks.
16. In addition to queues, VxWorks provides the IPCs through the pipe (Section 7.14) into whi

17. The features of scheduler design compatible with POSIX 1003.1b can also be used. Th
library can be included in VxWorks.

18. The timings taken by the various RTOS functions are similar to the ones given in Table 8.12.

The following subsections describe the specific VxWorks functions.

9.3.2 Task Management Library at the System Library Header File

Each task divides into eight states (places). First four of these are also available in MUCOS tasks.
1. Suspended (idle state just after creation or state where execution is inhibited). [Refer to the use of
OSTaskSuspend function for FirstTask in the step 12 of Example 9.8.)

2. Ready (waiting for running and CPU access in case scheduled by the scheduler but not waiting for a
message through IPC).

3. Pending (the task is blocked as it waits for a message from the IPC or from a resource; only then will
the CPU be able to process further). [Refer to OSSemPend, OSMboxPend and OSQPend furictions in
Examples 9.16 to 9.20].

4. Delayed (sent to sleep for a certain time interval). [Refer to the use of OSTimeDly in Examples 9.16

to 9.20].
Delayed + suspended (delayed and then suspended if it is not pre-empted during the delay period).
Pended for an IPC + suspended (pended and then suspended if the blocked state does not change).
Pended for an IPC + delayed (pended and then pre-empted after the delayed time interval).
Pended for an IPC for an IPC + suspended + delayed (pended and then suspended after the delayed
time interval).

VxWorks and kernel library functions are in the header files, ‘vxWorks.h’ and ‘kernelLibjh’. Task
and system library functions are in ‘taskLib.h’ and ‘sysLib.h’. For logging, the library function is ‘lpgLib.h’.
Library functions are given in Tables 9.8, 9.9 and 9.10. Table 9.8 lists the task-state function tr.

® oW

main, arg0, argl, ......... , arg8, arg9). A memory is allocated to the stack as well as to the TCB. The task
identified by taskID will be assigned a stack of size stacksize with arg0 to arg9 passed to the
also assigned a TCB pointer, which points to the entry point of function main that the system ex

is referred, VxWorks assumes that the calling task is being referred.

New task taskID gets the name, priority, options and stack size on spawning. If the NULL pointer is used
as the argument for name, then conventionally the name has two characters tN (character t followed by
number N) prefixed with the name.
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Function Present State Next State Previous Function Call before
: the Call or Previous States
taskResume () Suspended Delayed or pended  taskInit () (task must have been
initiated from the idle state)
taskResume () or taskActivate () Suspended Ready taskInit ()
taskSpispend () Delayed Suspended taskSpawn () or taskActivate ()
taskSpspend ( ) After a timeout Delayed Ready Suspended
taskShspend ( ) After a wait for a resource  Pended Suspended Ready
semGive ( ) or msgQSend () Pended Ready Suspended
semThke () or msgQReceive () Ready Pended Delayed or suspended
taskDelay () Ready Delayed Pended or suspended
taskSpspend () Ready Suspended Delayed or pended
tasklInit () Unknown Suspended
exit () Suspended Terminated
taskDlelete ( )2 Suspended Eliminated .
!Termirjate the task.
2Terrm:1:te the task and free the memory.

_Tff

9.9 Task Creation, Naming and Control Functions

I

Function

Description

taskI

taskSpfe ( )
taskUnsafe ()
taskDelete ( )
tasi(Restan ()
taskActivate ()
taskSpawn ()
taskName ()
taskNamelD ()
taskIPVerify ()
taskIDSelf ( )
taskIDListGet ( )
taskIpfoGet ( )
taskRegsGet ( )

bSuspended ()

taskI§Ready ( )
taskTcb ()

Protects the calling task from deletion

Permits deletion of the task protected earlier

Deletes a task

Restarts (create again)! the running task as the earlier run returned error

Task activates if initialized earlier
Creates as well as activates

Returns the task name that associates with the taskID passed as argument
Returns the taskId that associates with the task name passed as argument
Verifies if a task of taskID in the argument is available

Returns the taskID of the task
Returns an array of all ready tasksIDs

Returns information (parameters of the task)

Returns the registers of the task

taskRegsSet ( ) Sets the registers of the task
task(ptionsSet ( ) Sets the task options -
taskQptionsGet ( ) Returns task options defined earlier

Checks if the task is in a suspended state
Checks if the task is in a ready state

Returns the pointer to the task control block

(Contd)
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— . p—
Function . ) Description m
taskPriorityGet ( ) Returns the task pnonty
taskLock () It is used at the beginning of critical section. It disables other tasks (not SRs)
and thus rescheduling.? Priority pre-emption when the task is running

taskUnlock () It is used at end of critical section in a task and it enables other tasks a
rescheduling,’ Priority pre-emption when the task is running after
section '

taskPrioritySet ( ) Sets the priority within 0 and 255 ¥

kernelTimeSlice (int numTicks) Defines time slice per task after enabling round robin running of ﬂ;ﬂﬁjm
‘When numTicks = 50, aﬁer 50 system clock interrupts define the iding
period o

!Allocate the memory with the allocated stack and control blocks at the beginning.
2Scheduler cannot block when the task is running, although a higher-priority task needs to be scheduled.
3Scheduler can block when the task is running and when a higher-priority task needs to be scheduled.

1. Function ‘unsigned int taskIdSelf ( )’ returns the identity of the calling task. ;
2. Using a function ‘unsigned int [ ] listTasks = taskIdListGet ()’ will return the tasked list of all gxjsting
tasks needed in the array, listTasks. .

3. Function taskIDVerify (taskld) verifies whether the task taskId exists.
System-task has the priorities upto 99 and task-highest priority is 100 by default. User task priorifids are
between 101 and 255. Lowest priority means task of priority 255. In VxWorks, the priority numbering $cheme
is lower the number, the lower the priority. In POSIX, the priority numbering scheme is the reverse of VxWorks
(the lower the number, the lower the priority). Priority numbers below 100 are used for the system-leyel and
scheduler-level processes in VxWorks (MUCOS system-level and scheduler-level processes use the highest
eight and lowest eight priorities reserved for them).
A task may use priority-functions. For example, there are three functions in taskLib. A function

‘taskPriorityPut (taskld, newPriority)’ will reassign the priority = newPriority for the task that raskld i
The options definable on spawning are the following.

1. An option is VX_PRIVATE_ENV. It means that the task must be executed in the private envi

The task is then not a public environment task.

2. An optlon is VX_NO_STACK_] FILL It means no stack fills with the hexadecimal bytes OxEE. Stack-

stack as a buffer to protect the stack from overflow, which may lead to unpredictable behaviouf éf the
system. To start with, task stack fills the bytes OxEE. (When using simulator VxSim for the V. Works
application, VxSim adds an additional 8000 bytes to the stacksize. Thus, the stacks for inte
it simulates also become available.) A library function, ‘unsigned int checkStack (taskId)’ retdrds the
stack usage. It first finds the unused stack area by counting the number of bytes from the ead with
OxEE and then subtracts counts from the stacksize. !

3. An option is VX_FP_TASK. It means that the task must be executed with the floating-point mode of
processor. (The precision is higher when using floating-point processor. Time taken is smallgr when
using integer number processing for floating-point operations.)
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4.| An option is VX_UNBREAKABLE. It means disable the breakpoint at the task during execution.
(Breakpoints are provided for help during debugging.)
lace of option names, the hex values, 0x80, 0x100, 0x8 and 0x2, respectively, can be used for the four

_STACK_FILL selects both options in a task when spawning. Like the priority task, options can also
be rgagsigned using taskOptionsSet ( ) and taskOptionsGet ( ) functions. (The | sign is used between multiple
optiong because & sign in C refers to the address of the succeeding variable.)

The argument main is the main routine address. MUCOS and for many RTOSes, main () is the function,
which |is called by the RTOS first. Refer to Example 9.7. The main function is used to create a task that
executes first, FirstTask. FirstTask, when it executes later, initiates the system timer. It then creates (activates
as welf) the application tasks and suspends itself to let the OS schedule and run the application tasks. In
VxWotks, the main ( ) function analogue may be used. It is schedule ().
using VxWorks, unlike the Unix-operating system or MUCOS ( ), all tasks can be spawned as peers
(i.e., eyery task is independent and no task calls or spawns another task). This means that a task can be is’
similag to FirstTask in Example 9.7; a starting task (parent task) need not be spawned first. The starting task
spawn$ daughter tasks and then suspends itself to prevent scheduling of the parent in MUCOS. The daughters
i nt task are spawned in VxWorks only when the parent is a server task that concurrently processes the
task.

An jmportant point to note is that MUCOS OSTaskCreate creates the task as well as activates it (puts it in
the list|of tasks to be scheduled). These functions are separate in VxWorks. The taskInit ( ) and taskActivate

ple 9.23 will explain the use of taskSpawn function.
k suspending and resuming functions. Function taskSuspend (taskld) inhibits the execution of task
d by taskld. Function taskResume (taskId) resumes the execution of task identified by taskld. Function

is used in certain situations. The priority might have been reassigned in between, and now the original
priority is to be restored. Similarly, the start-up parameters might have to be restored.

eleting and protecting from deletion. Function taskDelete (taskId) not only inhibits permanently
the exegution but also cancels the allocation of the memory block for the task stack and TCB. Deletion thus frees
the memory. The task deleted is one identified by argument faskld. Function ‘exit (code)’ deletes the task itself
but stofes the code at a TCB field exitcode. The debugger can examine the TCB using the code.

A task should not be deleted when it has a resource key because the key can then never be released in case
deleted. Protection is available to the task by using a function taskSafe ( ) before entering its critical region
and usipg function taskUnsafe ( ) function at the end of the region. When using the mutex semaphore, we can
alternatively select an option, SEM_DELETE_SAFE when creating it (Refer to Section 9.3.4).

Why do we use the task delete or exit function? It is because that many times system resources have to be
reclaimed for reusing; memory may be a scarce resource for the given application. TCB and stack are the only
resources that are automatically reclaimed. There is no saving of tasks spawned by other tasks by the kernel.
Each'tﬁ should itself execute the codes for the following.

1. [Memory de-allocation.

2. {Ensure that the waiting task gets the desired IPC.

3. IClose a file, which was opened before.

4. Delete daughter tasks when the parent task executes the exit ( ) function.




4. Delaying a task to let a lower-priority task get access. The function ‘int sysClkRateGet ( )’ re
frequency (system ticks and thus system-clock interrupts per second). Therefore to delay 0.25 sec
function taskDelay (sysClkRate Get ( )/4) is used. Recall the use of OSTimeDly and later OSTi
resume in MUCOS (see Examples 9.16 to 9.20). This lets a task of lower.priority to run. VxWorks

No delayed task resumption is needed in the other priority task that runs after this function. Function n
(1,000,000) will delay the task by Ims. It is a POSIX function. Integer arguments define the number of
nanoseconds for delay (sleeping). N

9.3.3 VxWorks System Functions and System Tasks

messages without current task context IO. The daemon (a set of large number of functions) supports
level network functions. The exception-handling functions are at tExcTask. It has the highest pri
should not be suspended, deleted or assigned lesser priority. By using it, the system reports ex
conditions that arise during running the scheduler and tasks.

An important set of functions that are also target-specific is tWdbTask. The user creates it to se
requests from Tornado target server. It is a target agent task.

header file kernelLib.h. The following important funcuons are present.
1. Function sysClkDisable ( ) disables the system clock interrupts and sysClkEnable ( ) ena
system clock interrupts.

2. Function sysClkRateSet (TICK numTicks) sets the number of ticks per second. It thus defi e§ the

es the

starting function. I'here is a 64-bit global variable, ‘vxAbsTicks.lower’. Variable lower that i
after each tick and vxAbsTicks. Variable ‘vxAbsTicks.upper’ that increments after each 2% ti
‘TICK’ is defined by type def as following.

typedef struct (
unsigned long lower;
unsigned long upper;
) TICK
TICK vxAbsTicks;
/* Function’ unsigned long tickGet ( )’ returns vabsTicks.lower.:*/
3. Function sysClkConnect () connects a C function to the system clock interrupts. )
4. Function sysAuxClkDisable ( ) disables the system auxiliary clock interrupts and sysAuxC pable
() enables the system auxiliary clock interrupts.
5. Function sysAuxClkRateSet (numTicks) sets the number of ticks per second for an auxiliary ock It
thus defines the number of system auxiliary clock interrupts per second. Function sysAuxCIkRateGet
() returns the system auxiliary clock ticks (system clock interrupts) per second.
6. Function sysAuxClkConnect ( ) connects a C function to the system auxiliary syster clock
interrupts.
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7.| Function ‘WDOG_ID wdCreate ( )’ creates a watchdog timer. Statement ‘wdtID = wdCreate ( );’ creates
+ | @ watchdog timer, which later identifies by wdtID. There is a function STATUS wdStart (wdtlD,
delayNumTicks, wdtRoutine, wdtParameter). The timer created starts on calling this function. The
* | parameters that should pass as the arguments of this function are the following: (i) wdtID to define the
identity of the watchdog timer; (ii) delayNumTicks to let the timer interrupts after the number of system
clock interrupts of the system equal to delayNumTicks; (iii) wdtRoutine, a function called (not task or
ISR) on each interrupt; (iv) wdtParameter an argument, which passes to wdtRoutine. A started watchdog
timer, wdtID cancels on calling STATUS wdCancel (wdtID). A watchdog timer, wdtID de-allocates the
memory on calling STATUS wdtDelete (wdtID).

2. Pefining time-slice interval for round robin time-slice scheduling. Function kernelTimeSlice
Ticks) controls the round robin scheduling and time slicing turns on and preemptive priority scheduling
turns gff for the tasks of equal priority. Suppose there is a system clock tick every millisecond. kernelTimeSlice

intCornect ( ) connects the ISR_VECTADDR to a C function for that ISR. Device driver uses this function as
ws: a lock function used as ‘int lock = intLock ( );’ disables the interrupts. It returns an integer lock.
Using the same integer as argument in the unlock function, we enable the interrupts. An unlock function used
as ‘intUnlock (lock);’ enables the interrupts.
VxWorks provides for an ISR design that is different from a task design.

1. {ISRs have the highest priorities and can pre-empt any running task. It arises because ISR is needed
because of internal device events (e.g., from on-chip timers) and because of exceptions and signals
(user-defined software interrupts on certain error conditions).

Tahle 9.10 VxWorks Interrupt Service Functions

ction ) Description Function Description
k() Disables Interrupts! intUnlock () Enables Interrupts?
t() Set the interrupt vector? intCount () Counts number of interrupts nested
together

t() Get interrupt vector intVecBaseSet ()  Sets base address of interrupt vector

intVeqBaseGet ()  Get interrupt vector base address  intLevelSet ( ) Sets the interrupt mask level of the
) processor
intGogtext () Returns true when calling intConnect () Connects a C function to the interrupt
function is an ISR vector

12 Ttie feanings of these has been explained in the text. Also refer to Section 7.7.2. It can be used in a task critical region as a
last gption, because it increases the interrupt latency periods of all sources.
3 For fexception’ only. For hardware internal device interrupts, the interrupt vectors are fixed, cannot be set.



An ISR inhibits the execution of tasks till return.

bl o

by a special architecture of a system or processor, all ISRs use same interrupt stack. In case

An ISR does not execute like a task and does not have regular task context. It has a special ISR cpntext.
While each task has its own TCB that includes its own stack pointer, unless and otherwise not pefmnitted

f such

special architecture, in place of interrupt-servicing support functions, the VxWorks stacks of ISRs can
be used similar to task-stacks and codes can be defined similar to ones used in Examples 9.19 anfd 9.20

for the MUCOS tasks. CPUs 80x86 and R6000 are examples of the special architectures.
5. An ISR should not wait for taking the semaphore or other IPC (an ISR cannot use semTake fi

tion).

An ISR should not call ‘melloc ()’ for memory allocation as that the function uses semaphords. ISR

should not use mutex semaphore. ISR can use counting semaphore for giving (posting) sem
6. ISR should just write the required data at the memory or buffer or post (send or give) an IPC

a non-blocking write to a message queue (Section 7.12) so that it has short codes and most of its

which are non-critical and long time-taking, execute at the tasks.

ores.
make
icodes,

7. ISR should not use floating-point functions as these take longer times to execute. Let these fugctions

be passed onto the task that runs the codes later.

9.3.4 IPC Functions

i

Table 9.11 gives a list and description of the interprocess functions. Recall Sections 7.7.1, 7.7.2.1 and 7.7.5.

The table gives the functions for semaphore, message queue and pipe.

Signals and software interrupt functions are as follows: Function ‘void sigHandler (int sigNum);’ d;:cjlares

a signal servicing routine for a signal identified by sigNum and a signal servicing routine registers a si

pnal as

follows: signal (sigNum, sigISR). The parameters that pass are sigNum (for identifying the signal) an:cisignal—

servicing routine name, sigISR. Function sigHandler passes sigNum as well as an additional ¢

e. The

sigHandler.codes associates with sigHandler. A pointer *pSigCrx associates with the signal context. The
signal context saves CPU registers including PC and SP like an ISR context. The return from sigHa{xdler

restores the saved context.
Let sigISR be a C function that services the signal interrupt. Let its address be ISR_ADDR. Let the si
identified by sigNum. The function ‘intConnect (I_NUM_TO_IVEC (sigNum), sigISR, sigArg)’ will co ‘

pnal be
ect the

signal interrupt service routine (sigISR) for the signal identified by sigNum to the ISR_ADDR.I_NUM_T IVEC
(sigNum) is a function that uses the argument sigNum to find the program counter (PC) assignment fipm the

interrupt vector and uses it for ISR_ADDR. The argument sigArg passes for use by the C function.
The sigISR may call the following functions.
1. Call ‘taskRestart ( )’ to restart the task, which generated the sigNum. Restarting assigns the
context on creation. Original PC, SP, arguments and options to a task restore now.
2. Call ‘exit ()’ to terminate the task, which generated the sigNum.

riginal

3. Call ‘longjump ( ). This results in starting the execution from a memory location. The locatio is the

one that was saved when function setjump () was called.
VxWorks provides three kinds of semaphores, binary (flag), mutex and counting. Mutex semaphg

re also

takes care of the priority inversion problem on selecting an OPTION when creating it. Use of a binary semaphore
provides an advantage over disabling of interrupts is that it limits (blocks) the use of the associated regources

needed in sections within which that semaphore is required to be taken only.
A queue is used when the messages are put in queue for one or more waiting tasks. The VxWorks queue f
are in a library, msgQLib, which the user includes before using those. For full duplex communication be

c;.tions
e¢n the

two tasks, we should create two queues, one for each task. The mqPxLib functions are compatible with POSIX
1003.1b. A detailed description of the three types of VxWorks semaphores and message queues is given|next.




